Schnellstart: Bildanalyse 4.0
Erste Schritte mit der Image Analysis 4.0 REST API oder des Client-SDK zum Einrichten einer einfachen Bildanalyse-Anwendung. Der Image Analysis-Dienst stellt KI-Algorithmen für die Bildverarbeitung und die Rückgabe von Informationen zu visuellen Merkmalen bereit. Führen Sie die nachfolgenden Schritte zum Installieren eines Pakets in Ihrer Anwendung aus, und testen Sie den Beispielcode.
Verwenden Sie das Bildanalyse-Client-SDK für .NET, um Text in einem Bild zu lesen und eine Bildbeschriftung zu generieren. In diesem Schnellstart wird ein Remotebild analysiert und die Ergebnisse in der Konsole ausgegeben.
Referenzdokumentation | Paket (NuGet) | Beispiele
Tipp
Die API Analysis 4.0 kann viele verschiedene Vorgänge ausführen. In der Anleitung zur Bildanalyse finden Sie Beispiele, die alle verfügbaren Features präsentieren.
Voraussetzungen
- Azure-Abonnement: Kostenloses Azure-Konto
- Die Visual Studio-IDE mit Workload-.NET-Desktopentwicklung ist aktiviert. Oder wenn Sie die Visual Studio-IDE nicht verwenden möchten, müssen Sie das .NET SDK installieren.
- Wenn Sie über Ihr Azure-Abonnement verfügen, sollten Sie im Azure-Portal eine Ressource für maschinelles Sehen erstellen. Um das Beschriftungsfeature in diesem Schnellstart verwenden zu können, müssen Sie Ihre Ressource in einer der unterstützten Azure-Regionen erstellen (siehe Bildbeschriftungen). Wählen Sie nach Abschluss der Bereitstellung Zu Ressource wechseln aus.
- Sie benötigen den Schlüssel und den Endpunkt der von Ihnen erstellten Ressource, um Ihre Anwendung mit dem Azure KI Vision-Dienst zu verbinden.
- Sie können den kostenlosen Tarif (
F0
) verwenden, um den Dienst zu testen, und später für die Produktion auf einen kostenpflichtigen Tarif upgraden.
Anwendungseinrichtung
Erstellen einer neuen C#-Anwendung
Öffnen Sie Visual Studio, und wählen Sie unter Erste Schritte die Option Neues Projekt erstellen aus. Legen Sie die Vorlagenfilter auf C#/Alle Plattformen/Konsole fest. Wählen Sie Konsolen-App (Befehlszeilenanwendung, die unter .NET unter Windows, Linux und macOS ausgeführt werden kann) und dann Weiter aus. Aktualisieren Sie den Projektnamen auf ImageAnalysisQuickstart, und wählen Sie Weiter aus. Wählen Sie .NET 6.0 oder höher und dann Erstellen aus, um das Projekt zu erstellen.
Installieren dem Client-SDK
Installieren Sie nach der Erstellung eines neuen Projekts das Client-SDK, indem Sie im Projektmappen-Explorer mit der rechten Maustaste auf die Projektmappe klicken und NuGet-Pakete verwalten auswählen. Wählen Sie im daraufhin geöffneten Paket-Manager die Option Durchsuchen aus, aktivieren Sie das Kontrollkästchen Vorabversion einbeziehen, und suchen Sie nach Azure.AI.Vision.ImageAnalysis
. Wählen Sie Installieren aus.
Erstellen von Umgebungsvariablen
In diesem Beispiel schreiben Sie Ihre Anmeldeinformationen in Umgebungsvariablen auf dem lokalen Computer, auf dem die Anwendung ausgeführt wird.
Öffnen Sie das Azure-Portal. Wenn die Ressource, die Sie im Abschnitt Voraussetzungen erstellt haben, erfolgreich bereitgestellt wurde, wählen Sie unter Nächste Schritte die Option Zu Ressource wechseln aus. Schlüssel und Endpunkt finden Sie unter Ressourcenverwaltung auf der Seite Schlüssel und Endpunkte. Ihr Ressourcenschlüssel ist nicht mit Ihrer Azure-Abonnement-ID identisch.
Um die Umgebungsvariable für Ihren Ressourcenschlüssel und Endpunkt festzulegen, öffnen Sie ein Konsolenfenster und befolgen Sie die Anweisungen für Ihr Betriebssystem und Ihre Entwicklungsumgebung.
- Zum Festlegen der Umgebungsvariablen
VISION_KEY
ersetzen Sie<your_key>
durch einen der Schlüssel für Ihre Ressource. - Zum Festlegen der Umgebungsvariablen
VISION_ENDPOINT
ersetzen Sie<your_endpoint>
durch den Endpunkt für Ihre Ressource.
Wichtig
Wenn Sie einen API-Schlüssel verwenden, speichern Sie ihn an einer anderen Stelle sicher, z. B. in Azure Key Vault. Fügen Sie den API-Schlüssel nicht direkt in Ihren Code ein, und machen Sie ihn nicht öffentlich zugänglich.
Weitere Informationen zur Sicherheit von KI Services finden Sie unter Authentifizieren von Anforderungen an Azure KI Services.
setx VISION_KEY <your_key>
setx VISION_ENDPOINT <your_endpoint>
Nach dem Hinzufügen der Umgebungsvariablen müssen Sie möglicherweise alle ausgeführten Programme neu starten, die die Umgebungsvariablen lesen, z. B. das Konsolenfenster.
Bild analysieren
Öffnen Sie im Projektverzeichnis die Datei Program.cs, die zuvor mit Ihrem neuen Projekt erstellt wurde. Fügen Sie den folgenden Code ein:
Tipp
Der Code zeigt die Analyse einer Bild-URL. Sie können auch eine lokale Bilddatei oder ein Bild aus einem Speicherpuffer analysieren. Weitere Informationen finden Sie in der Schrittanleitung für die Bildanalyse.
using Azure;
using Azure.AI.Vision.ImageAnalysis;
using System;
public class Program
{
static void AnalyzeImage()
{
string endpoint = Environment.GetEnvironmentVariable("VISION_ENDPOINT");
string key = Environment.GetEnvironmentVariable("VISION_KEY");
ImageAnalysisClient client = new ImageAnalysisClient(
new Uri(endpoint),
new AzureKeyCredential(key));
ImageAnalysisResult result = client.Analyze(
new Uri("https://zcusa.951200.xyz/azure/ai-services/computer-vision/media/quickstarts/presentation.png"),
VisualFeatures.Caption | VisualFeatures.Read,
new ImageAnalysisOptions { GenderNeutralCaption = true });
Console.WriteLine("Image analysis results:");
Console.WriteLine(" Caption:");
Console.WriteLine($" '{result.Caption.Text}', Confidence {result.Caption.Confidence:F4}");
Console.WriteLine(" Read:");
foreach (DetectedTextBlock block in result.Read.Blocks)
foreach (DetectedTextLine line in block.Lines)
{
Console.WriteLine($" Line: '{line.Text}', Bounding Polygon: [{string.Join(" ", line.BoundingPolygon)}]");
foreach (DetectedTextWord word in line.Words)
{
Console.WriteLine($" Word: '{word.Text}', Confidence {word.Confidence.ToString("#.####")}, Bounding Polygon: [{string.Join(" ", word.BoundingPolygon)}]");
}
}
}
static void Main()
{
try
{
AnalyzeImage();
}
catch (Exception e)
{
Console.WriteLine(e);
}
}
}
Erstellen Sie die Anwendung, und führen Sie sie aus, indem Sie im Menü Debuggen oben im IDE-Fenster auf Debuggen starten klicken (oder F5 drücken).
Output
In der Konsolenausgabe sollte der folgende Text angezeigt werden:
Caption:
"a person pointing at a screen", Confidence 0.4892
Text:
Line: '9:35 AM', Bounding polygon {{X=130,Y=129},{X=215,Y=130},{X=215,Y=149},{X=130,Y=148}}
Word: '9:35', Bounding polygon {{X=131,Y=130},{X=171,Y=130},{X=171,Y=149},{X=130,Y=149}}, Confidence 0.9930
Word: 'AM', Bounding polygon {{X=179,Y=130},{X=204,Y=130},{X=203,Y=149},{X=178,Y=149}}, Confidence 0.9980
Line: 'E Conference room 154584354', Bounding polygon {{X=130,Y=153},{X=224,Y=154},{X=224,Y=161},{X=130,Y=161}}
Word: 'E', Bounding polygon {{X=131,Y=154},{X=135,Y=154},{X=135,Y=161},{X=131,Y=161}}, Confidence 0.1040
Word: 'Conference', Bounding polygon {{X=142,Y=154},{X=174,Y=154},{X=173,Y=161},{X=141,Y=161}}, Confidence 0.9020
Word: 'room', Bounding polygon {{X=175,Y=154},{X=189,Y=155},{X=188,Y=161},{X=175,Y=161}}, Confidence 0.7960
Word: '154584354', Bounding polygon {{X=192,Y=155},{X=224,Y=154},{X=223,Y=162},{X=191,Y=161}}, Confidence 0.8640
Line: '#: 555-173-4547', Bounding polygon {{X=130,Y=163},{X=182,Y=164},{X=181,Y=171},{X=130,Y=170}}
Word: '#:', Bounding polygon {{X=131,Y=163},{X=139,Y=164},{X=139,Y=171},{X=131,Y=171}}, Confidence 0.0360
Word: '555-173-4547', Bounding polygon {{X=142,Y=164},{X=182,Y=165},{X=181,Y=171},{X=142,Y=171}}, Confidence 0.5970
Line: 'Town Hall', Bounding polygon {{X=546,Y=180},{X=590,Y=180},{X=590,Y=190},{X=546,Y=190}}
Word: 'Town', Bounding polygon {{X=547,Y=181},{X=568,Y=181},{X=568,Y=190},{X=546,Y=191}}, Confidence 0.9810
Word: 'Hall', Bounding polygon {{X=570,Y=181},{X=590,Y=181},{X=590,Y=191},{X=570,Y=190}}, Confidence 0.9910
Line: '9:00 AM - 10:00 AM', Bounding polygon {{X=546,Y=191},{X=596,Y=192},{X=596,Y=200},{X=546,Y=199}}
Word: '9:00', Bounding polygon {{X=546,Y=192},{X=555,Y=192},{X=555,Y=200},{X=546,Y=200}}, Confidence 0.0900
Word: 'AM', Bounding polygon {{X=557,Y=192},{X=565,Y=192},{X=565,Y=200},{X=557,Y=200}}, Confidence 0.9910
Word: '-', Bounding polygon {{X=567,Y=192},{X=569,Y=192},{X=569,Y=200},{X=567,Y=200}}, Confidence 0.6910
Word: '10:00', Bounding polygon {{X=570,Y=192},{X=585,Y=193},{X=584,Y=200},{X=570,Y=200}}, Confidence 0.8850
Word: 'AM', Bounding polygon {{X=586,Y=193},{X=593,Y=194},{X=593,Y=200},{X=586,Y=200}}, Confidence 0.9910
Line: 'Aaron Buaion', Bounding polygon {{X=543,Y=201},{X=581,Y=201},{X=581,Y=208},{X=543,Y=208}}
Word: 'Aaron', Bounding polygon {{X=545,Y=202},{X=560,Y=202},{X=559,Y=208},{X=544,Y=208}}, Confidence 0.6020
Word: 'Buaion', Bounding polygon {{X=561,Y=202},{X=580,Y=202},{X=579,Y=208},{X=560,Y=208}}, Confidence 0.2910
Line: 'Daily SCRUM', Bounding polygon {{X=537,Y=259},{X=575,Y=260},{X=575,Y=266},{X=537,Y=265}}
Word: 'Daily', Bounding polygon {{X=538,Y=259},{X=551,Y=260},{X=550,Y=266},{X=538,Y=265}}, Confidence 0.1750
Word: 'SCRUM', Bounding polygon {{X=552,Y=260},{X=570,Y=260},{X=570,Y=266},{X=551,Y=266}}, Confidence 0.1140
Line: '10:00 AM 11:00 AM', Bounding polygon {{X=536,Y=266},{X=590,Y=266},{X=590,Y=272},{X=536,Y=272}}
Word: '10:00', Bounding polygon {{X=539,Y=267},{X=553,Y=267},{X=552,Y=273},{X=538,Y=272}}, Confidence 0.8570
Word: 'AM', Bounding polygon {{X=554,Y=267},{X=561,Y=267},{X=560,Y=273},{X=553,Y=273}}, Confidence 0.9980
Word: '11:00', Bounding polygon {{X=564,Y=267},{X=578,Y=267},{X=577,Y=273},{X=563,Y=273}}, Confidence 0.4790
Word: 'AM', Bounding polygon {{X=579,Y=267},{X=586,Y=267},{X=585,Y=273},{X=578,Y=273}}, Confidence 0.9940
Line: 'Churlette de Crum', Bounding polygon {{X=538,Y=273},{X=584,Y=273},{X=585,Y=279},{X=538,Y=279}}
Word: 'Churlette', Bounding polygon {{X=539,Y=274},{X=562,Y=274},{X=561,Y=279},{X=538,Y=279}}, Confidence 0.4640
Word: 'de', Bounding polygon {{X=563,Y=274},{X=569,Y=274},{X=568,Y=279},{X=562,Y=279}}, Confidence 0.8100
Word: 'Crum', Bounding polygon {{X=570,Y=274},{X=582,Y=273},{X=581,Y=279},{X=569,Y=279}}, Confidence 0.8850
Line: 'Quarterly NI Hands', Bounding polygon {{X=538,Y=295},{X=588,Y=295},{X=588,Y=301},{X=538,Y=302}}
Word: 'Quarterly', Bounding polygon {{X=540,Y=296},{X=562,Y=296},{X=562,Y=302},{X=539,Y=302}}, Confidence 0.5230
Word: 'NI', Bounding polygon {{X=563,Y=296},{X=570,Y=296},{X=570,Y=302},{X=563,Y=302}}, Confidence 0.3030
Word: 'Hands', Bounding polygon {{X=572,Y=296},{X=588,Y=296},{X=588,Y=302},{X=571,Y=302}}, Confidence 0.6130
Line: '11.00 AM-12:00 PM', Bounding polygon {{X=536,Y=304},{X=588,Y=303},{X=588,Y=309},{X=536,Y=310}}
Word: '11.00', Bounding polygon {{X=538,Y=304},{X=552,Y=304},{X=552,Y=310},{X=538,Y=310}}, Confidence 0.6180
Word: 'AM-12:00', Bounding polygon {{X=554,Y=304},{X=578,Y=304},{X=577,Y=310},{X=553,Y=310}}, Confidence 0.2700
Word: 'PM', Bounding polygon {{X=579,Y=304},{X=586,Y=304},{X=586,Y=309},{X=578,Y=310}}, Confidence 0.6620
Line: 'Bebek Shaman', Bounding polygon {{X=538,Y=310},{X=577,Y=310},{X=577,Y=316},{X=538,Y=316}}
Word: 'Bebek', Bounding polygon {{X=539,Y=310},{X=554,Y=310},{X=554,Y=317},{X=539,Y=316}}, Confidence 0.6110
Word: 'Shaman', Bounding polygon {{X=555,Y=310},{X=576,Y=311},{X=576,Y=317},{X=555,Y=317}}, Confidence 0.6050
Line: 'Weekly stand up', Bounding polygon {{X=537,Y=332},{X=582,Y=333},{X=582,Y=339},{X=537,Y=338}}
Word: 'Weekly', Bounding polygon {{X=538,Y=332},{X=557,Y=333},{X=556,Y=339},{X=538,Y=338}}, Confidence 0.6060
Word: 'stand', Bounding polygon {{X=558,Y=333},{X=572,Y=334},{X=571,Y=340},{X=557,Y=339}}, Confidence 0.4890
Word: 'up', Bounding polygon {{X=574,Y=334},{X=580,Y=334},{X=580,Y=340},{X=573,Y=340}}, Confidence 0.8150
Line: '12:00 PM-1:00 PM', Bounding polygon {{X=537,Y=340},{X=583,Y=340},{X=583,Y=347},{X=536,Y=346}}
Word: '12:00', Bounding polygon {{X=539,Y=341},{X=553,Y=341},{X=552,Y=347},{X=538,Y=347}}, Confidence 0.8260
Word: 'PM-1:00', Bounding polygon {{X=554,Y=341},{X=575,Y=341},{X=574,Y=347},{X=553,Y=347}}, Confidence 0.2090
Word: 'PM', Bounding polygon {{X=576,Y=341},{X=583,Y=341},{X=582,Y=347},{X=575,Y=347}}, Confidence 0.0390
Line: 'Delle Marckre', Bounding polygon {{X=538,Y=347},{X=582,Y=347},{X=582,Y=352},{X=538,Y=353}}
Word: 'Delle', Bounding polygon {{X=540,Y=348},{X=559,Y=347},{X=558,Y=353},{X=539,Y=353}}, Confidence 0.5800
Word: 'Marckre', Bounding polygon {{X=560,Y=347},{X=582,Y=348},{X=582,Y=353},{X=559,Y=353}}, Confidence 0.2750
Line: 'Product review', Bounding polygon {{X=538,Y=370},{X=577,Y=370},{X=577,Y=376},{X=538,Y=375}}
Word: 'Product', Bounding polygon {{X=539,Y=370},{X=559,Y=371},{X=558,Y=376},{X=539,Y=376}}, Confidence 0.6150
Word: 'review', Bounding polygon {{X=560,Y=371},{X=576,Y=371},{X=575,Y=376},{X=559,Y=376}}, Confidence 0.0400
Bereinigen von Ressourcen
Wenn Sie ein Azure KI Services-Abonnement bereinigen und entfernen möchten, können Sie die Ressource oder die Ressourcengruppe löschen. Wenn Sie die Ressourcengruppe löschen, werden auch alle anderen Ressourcen gelöscht, die ihr zugeordnet sind.
Nächste Schritte
In dieser Schnellstartanleitung haben Sie gelernt, wie Sie das Bildanalyse-Client-SDK installieren und grundlegende Bildanalyseaufrufe durchführen. Als Nächstes erfahren Sie mehr über die Funktionen der API Analysis 4.0.
- Übersicht über die Bildanalyse
- Beispielcode finden Sie auf GitHub.
Verwenden Sie das Bildanalyse-Client-SDK für Python, um Text in einem Bild zu lesen und eine Bildbeschriftung zu generieren. In diesem Schnellstart wird ein Remotebild analysiert und die Ergebnisse in der Konsole ausgegeben.
Referenzdokumentation | Paket (PyPi) | Beispiele
Tipp
Die API Analysis 4.0 kann viele verschiedene Vorgänge ausführen. In der Anleitung zur Bildanalyse finden Sie Beispiele, die alle verfügbaren Features präsentieren.
Voraussetzungen
- Azure-Abonnement: Kostenloses Azure-Konto
- Python 3.x. Ihre Python-Installation sollte pip enthalten. Sie können überprüfen, ob pip installiert ist, indem Sie
pip --version
in der Befehlszeile ausführen. Installieren Sie die aktuelle Python-Version, um pip zu erhalten. - Wenn Sie über Ihr Azure-Abonnement verfügen, sollten Sie im Azure-Portal eine Ressource für maschinelles Sehen erstellen. Um das Beschriftungsfeature in diesem Schnellstart verwenden zu können, müssen Sie Ihre Ressource in einer der unterstützten Azure-Regionen erstellen (siehe Bildbeschriftungen für die Liste der Regionen). Wählen Sie nach Abschluss der Bereitstellung Zu Ressource wechseln aus.
- Sie benötigen den Schlüssel und den Endpunkt der von Ihnen erstellten Ressource, um Ihre Anwendung mit dem Azure KI Vision-Dienst zu verbinden.
- Sie können den kostenlosen Tarif (
F0
) verwenden, um den Dienst zu testen, und später für die Produktion auf einen kostenpflichtigen Tarif upgraden.
Erstellen von Umgebungsvariablen
In diesem Beispiel schreiben Sie Ihre Anmeldeinformationen in Umgebungsvariablen auf dem lokalen Computer, auf dem die Anwendung ausgeführt wird.
Öffnen Sie das Azure-Portal. Wenn die Ressource, die Sie im Abschnitt Voraussetzungen erstellt haben, erfolgreich bereitgestellt wurde, wählen Sie unter Nächste Schritte die Option Zu Ressource wechseln aus. Schlüssel und Endpunkt finden Sie unter Ressourcenverwaltung auf der Seite Schlüssel und Endpunkte. Ihr Ressourcenschlüssel ist nicht mit Ihrer Azure-Abonnement-ID identisch.
Um die Umgebungsvariable für Ihren Ressourcenschlüssel und Endpunkt festzulegen, öffnen Sie ein Konsolenfenster und befolgen Sie die Anweisungen für Ihr Betriebssystem und Ihre Entwicklungsumgebung.
- Zum Festlegen der Umgebungsvariablen
VISION_KEY
ersetzen Sie<your_key>
durch einen der Schlüssel für Ihre Ressource. - Zum Festlegen der Umgebungsvariablen
VISION_ENDPOINT
ersetzen Sie<your_endpoint>
durch den Endpunkt für Ihre Ressource.
Wichtig
Wenn Sie einen API-Schlüssel verwenden, speichern Sie ihn an einer anderen Stelle sicher, z. B. in Azure Key Vault. Fügen Sie den API-Schlüssel nicht direkt in Ihren Code ein, und machen Sie ihn nicht öffentlich zugänglich.
Weitere Informationen zur Sicherheit von KI Services finden Sie unter Authentifizieren von Anforderungen an Azure KI Services.
setx VISION_KEY <your_key>
setx VISION_ENDPOINT <your_endpoint>
Nach dem Hinzufügen der Umgebungsvariablen müssen Sie möglicherweise alle ausgeführten Programme neu starten, die die Umgebungsvariablen lesen, z. B. das Konsolenfenster.
Bild analysieren
Öffnen Sie am gewünschten Speicherort für das neue Projekt eine Eingabeaufforderung, und erstellen Sie eine neue Datei mit dem Namen quickstart.py.
Führen Sie diesen Befehl aus, um das Bildanalyse-SDK zu installieren:
pip install azure-ai-vision-imageanalysis
Kopieren Sie den folgenden Code in quickstart.py:
Tipp
Der Code zeigt die Analyse einer Bild-URL. Sie können ein Bild auch aus dem Programmspeicherpuffer analysieren. Weitere Informationen finden Sie in der Schrittanleitung für die Bildanalyse.
import os from azure.ai.vision.imageanalysis import ImageAnalysisClient from azure.ai.vision.imageanalysis.models import VisualFeatures from azure.core.credentials import AzureKeyCredential # Set the values of your computer vision endpoint and computer vision key # as environment variables: try: endpoint = os.environ["VISION_ENDPOINT"] key = os.environ["VISION_KEY"] except KeyError: print("Missing environment variable 'VISION_ENDPOINT' or 'VISION_KEY'") print("Set them before running this sample.") exit() # Create an Image Analysis client client = ImageAnalysisClient( endpoint=endpoint, credential=AzureKeyCredential(key) ) # Get a caption for the image. This will be a synchronously (blocking) call. result = client.analyze_from_url( image_url="https://zcusa.951200.xyz/azure/ai-services/computer-vision/media/quickstarts/presentation.png", visual_features=[VisualFeatures.CAPTION, VisualFeatures.READ], gender_neutral_caption=True, # Optional (default is False) ) print("Image analysis results:") # Print caption results to the console print(" Caption:") if result.caption is not None: print(f" '{result.caption.text}', Confidence {result.caption.confidence:.4f}") # Print text (OCR) analysis results to the console print(" Read:") if result.read is not None: for line in result.read.blocks[0].lines: print(f" Line: '{line.text}', Bounding box {line.bounding_polygon}") for word in line.words: print(f" Word: '{word.text}', Bounding polygon {word.bounding_polygon}, Confidence {word.confidence:.4f}")
Führen Sie dann die Anwendung mit dem Befehl
python
für die Schnellstartdatei aus.python quickstart.py
Output
In der Konsolenausgabe sollte der folgende Text angezeigt werden:
Caption:
'a person pointing at a screen', Confidence 0.4892
Text:
Line: '9:35 AM', Bounding polygon {130, 129, 215, 130, 215, 149, 130, 148}
Word: '9:35', Bounding polygon {131, 130, 171, 130, 171, 149, 130, 149}, Confidence 0.9930
Word: 'AM', Bounding polygon {179, 130, 204, 130, 203, 149, 178, 149}, Confidence 0.9980
Line: 'E Conference room 154584354', Bounding polygon {130, 153, 224, 154, 224, 161, 130, 161}
Word: 'E', Bounding polygon {131, 154, 135, 154, 135, 161, 131, 161}, Confidence 0.1040
Word: 'Conference', Bounding polygon {142, 154, 174, 154, 173, 161, 141, 161}, Confidence 0.9020
Word: 'room', Bounding polygon {175, 154, 189, 155, 188, 161, 175, 161}, Confidence 0.7960
Word: '154584354', Bounding polygon {192, 155, 224, 154, 223, 162, 191, 161}, Confidence 0.8640
Line: '#: 555-173-4547', Bounding polygon {130, 163, 182, 164, 181, 171, 130, 170}
Word: '#:', Bounding polygon {131, 163, 139, 164, 139, 171, 131, 171}, Confidence 0.0360
Word: '555-173-4547', Bounding polygon {142, 164, 182, 165, 181, 171, 142, 171}, Confidence 0.5970
Line: 'Town Hall', Bounding polygon {546, 180, 590, 180, 590, 190, 546, 190}
Word: 'Town', Bounding polygon {547, 181, 568, 181, 568, 190, 546, 191}, Confidence 0.9810
Word: 'Hall', Bounding polygon {570, 181, 590, 181, 590, 191, 570, 190}, Confidence 0.9910
Line: '9:00 AM - 10:00 AM', Bounding polygon {546, 191, 596, 192, 596, 200, 546, 199}
Word: '9:00', Bounding polygon {546, 192, 555, 192, 555, 200, 546, 200}, Confidence 0.0900
Word: 'AM', Bounding polygon {557, 192, 565, 192, 565, 200, 557, 200}, Confidence 0.9910
Word: '-', Bounding polygon {567, 192, 569, 192, 569, 200, 567, 200}, Confidence 0.6910
Word: '10:00', Bounding polygon {570, 192, 585, 193, 584, 200, 570, 200}, Confidence 0.8850
Word: 'AM', Bounding polygon {586, 193, 593, 194, 593, 200, 586, 200}, Confidence 0.9910
Line: 'Aaron Buaion', Bounding polygon {543, 201, 581, 201, 581, 208, 543, 208}
Word: 'Aaron', Bounding polygon {545, 202, 560, 202, 559, 208, 544, 208}, Confidence 0.6020
Word: 'Buaion', Bounding polygon {561, 202, 580, 202, 579, 208, 560, 208}, Confidence 0.2910
Line: 'Daily SCRUM', Bounding polygon {537, 259, 575, 260, 575, 266, 537, 265}
Word: 'Daily', Bounding polygon {538, 259, 551, 260, 550, 266, 538, 265}, Confidence 0.1750
Word: 'SCRUM', Bounding polygon {552, 260, 570, 260, 570, 266, 551, 266}, Confidence 0.1140
Line: '10:00 AM 11:00 AM', Bounding polygon {536, 266, 590, 266, 590, 272, 536, 272}
Word: '10:00', Bounding polygon {539, 267, 553, 267, 552, 273, 538, 272}, Confidence 0.8570
Word: 'AM', Bounding polygon {554, 267, 561, 267, 560, 273, 553, 273}, Confidence 0.9980
Word: '11:00', Bounding polygon {564, 267, 578, 267, 577, 273, 563, 273}, Confidence 0.4790
Word: 'AM', Bounding polygon {579, 267, 586, 267, 585, 273, 578, 273}, Confidence 0.9940
Line: 'Churlette de Crum', Bounding polygon {538, 273, 584, 273, 585, 279, 538, 279}
Word: 'Churlette', Bounding polygon {539, 274, 562, 274, 561, 279, 538, 279}, Confidence 0.4640
Word: 'de', Bounding polygon {563, 274, 569, 274, 568, 279, 562, 279}, Confidence 0.8100
Word: 'Crum', Bounding polygon {570, 274, 582, 273, 581, 279, 569, 279}, Confidence 0.8850
Line: 'Quarterly NI Hands', Bounding polygon {538, 295, 588, 295, 588, 301, 538, 302}
Word: 'Quarterly', Bounding polygon {540, 296, 562, 296, 562, 302, 539, 302}, Confidence 0.5230
Word: 'NI', Bounding polygon {563, 296, 570, 296, 570, 302, 563, 302}, Confidence 0.3030
Word: 'Hands', Bounding polygon {572, 296, 588, 296, 588, 302, 571, 302}, Confidence 0.6130
Line: '11.00 AM-12:00 PM', Bounding polygon {536, 304, 588, 303, 588, 309, 536, 310}
Word: '11.00', Bounding polygon {538, 304, 552, 304, 552, 310, 538, 310}, Confidence 0.6180
Word: 'AM-12:00', Bounding polygon {554, 304, 578, 304, 577, 310, 553, 310}, Confidence 0.2700
Word: 'PM', Bounding polygon {579, 304, 586, 304, 586, 309, 578, 310}, Confidence 0.6620
Line: 'Bebek Shaman', Bounding polygon {538, 310, 577, 310, 577, 316, 538, 316}
Word: 'Bebek', Bounding polygon {539, 310, 554, 310, 554, 317, 539, 316}, Confidence 0.6110
Word: 'Shaman', Bounding polygon {555, 310, 576, 311, 576, 317, 555, 317}, Confidence 0.6050
Line: 'Weekly stand up', Bounding polygon {537, 332, 582, 333, 582, 339, 537, 338}
Word: 'Weekly', Bounding polygon {538, 332, 557, 333, 556, 339, 538, 338}, Confidence 0.6060
Word: 'stand', Bounding polygon {558, 333, 572, 334, 571, 340, 557, 339}, Confidence 0.4890
Word: 'up', Bounding polygon {574, 334, 580, 334, 580, 340, 573, 340}, Confidence 0.8150
Line: '12:00 PM-1:00 PM', Bounding polygon {537, 340, 583, 340, 583, 347, 536, 346}
Word: '12:00', Bounding polygon {539, 341, 553, 341, 552, 347, 538, 347}, Confidence 0.8260
Word: 'PM-1:00', Bounding polygon {554, 341, 575, 341, 574, 347, 553, 347}, Confidence 0.2090
Word: 'PM', Bounding polygon {576, 341, 583, 341, 582, 347, 575, 347}, Confidence 0.0390
Line: 'Delle Marckre', Bounding polygon {538, 347, 582, 347, 582, 352, 538, 353}
Word: 'Delle', Bounding polygon {540, 348, 559, 347, 558, 353, 539, 353}, Confidence 0.5800
Word: 'Marckre', Bounding polygon {560, 347, 582, 348, 582, 353, 559, 353}, Confidence 0.2750
Line: 'Product review', Bounding polygon {538, 370, 577, 370, 577, 376, 538, 375}
Word: 'Product', Bounding polygon {539, 370, 559, 371, 558, 376, 539, 376}, Confidence 0.6150
Word: 'review', Bounding polygon {560, 371, 576, 371, 575, 376, 559, 376}, Confidence 0.0400
Bereinigen von Ressourcen
Wenn Sie ein Azure KI Services-Abonnement bereinigen und entfernen möchten, können Sie die Ressource oder die Ressourcengruppe löschen. Wenn Sie die Ressourcengruppe löschen, werden auch alle anderen Ressourcen gelöscht, die ihr zugeordnet sind.
Nächste Schritte
In dieser Schnellstartanleitung haben Sie gelernt, wie Sie das Bildanalyse-Client-SDK installieren und grundlegende Bildanalyseaufrufe durchführen. Als Nächstes erfahren Sie mehr über die Funktionen der API Analysis 4.0.
- Übersicht über die Bildanalyse
- Beispielcode finden Sie auf GitHub.
Verwenden Sie das Bildanalyse-Client-SDK für Java, um Text in einem Bild zu lesen und eine Bildbeschriftung zu generieren. In diesem Schnellstart wird ein Remotebild analysiert und die Ergebnisse in der Konsole ausgegeben.
Referenzdokumentation | Maven-Paket | Stichproben
Tipp
Die API Analysis 4.0 kann viele verschiedene Vorgänge ausführen. In der Anleitung zur Bildanalyse finden Sie Beispiele, die alle verfügbaren Features präsentieren.
Voraussetzungen
- Ein Windows 10 (oder höher) x64- oder Linux x64-Computer.
- Java Development Kit (JDK) Version 8 oder höher installiert, z. B. Azul Zulu OpenJDK, Microsoft Build of OpenJDK, Oracle Java oder Ihr bevorzugtes JDK. Führen Sie
java -version
über eine Befehlszeile aus, um Ihre Version anzuzeigen und die erfolgreiche Installation zu bestätigen. Stellen Sie sicher, dass die Java-Installation in der Systemarchitektur nativ ist und nicht über Emulation ausgeführt wird. - Apache Maven muss installiert sein. Installieren Sie es unter Linux über die Verteilungsrepositorys, falls verfügbar. Führen Sie
mvn -v
aus, um die erfolgreiche Installation zu bestätigen. - Azure-Abonnement: Kostenloses Azure-Konto
- Wenn Sie über Ihr Azure-Abonnement verfügen, sollten Sie im Azure-Portal eine Ressource für maschinelles Sehen erstellen. Um das Beschriftungsfeature in diesem Schnellstart verwenden zu können, müssen Sie Ihre Ressource in einer der unterstützten Azure-Regionen erstellen (siehe Bildbeschriftungen). Wählen Sie nach Abschluss der Bereitstellung Zu Ressource wechseln aus.
- Sie benötigen den Schlüssel und den Endpunkt der von Ihnen erstellten Ressource, um Ihre Anwendung mit dem Azure KI Vision-Dienst zu verbinden.
- Sie können den kostenlosen Tarif (
F0
) verwenden, um den Dienst zu testen, und später für die Produktion auf einen kostenpflichtigen Tarif upgraden.
Anwendungseinrichtung
Öffnen Sie ein Konsolenfenster, und erstellen Sie einen neuen Ordner für Ihre Schnellstartanwendung.
Öffnen Sie einen Text-Editor, und kopieren Sie den folgenden Inhalt in eine neue Datei. Speichern Sie die Datei als
pom.xml
in Ihrem Projektverzeichnis<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.example</groupId> <artifactId>my-application-name</artifactId> <version>1.0.0</version> <dependencies> <!-- https://mvnrepository.com/artifact/com.azure/azure-ai-vision-imageanalysis --> <dependency> <groupId>com.azure</groupId> <artifactId>azure-ai-vision-imageanalysis</artifactId> <version>1.0.0-beta.2</version> </dependency> <!-- https://mvnrepository.com/artifact/org.slf4j/slf4j-nop --> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-nop</artifactId> <version>1.7.36</version> </dependency> </dependencies> </project>
Aktualisieren Sie den Versionswert (
1.0.0-beta.2
) basierend auf der neuesten verfügbaren Version des azure-ai-vision-imageanalysis-Pakets im Maven-Repository.Installieren Sie das SDK und die Abhängigkeiten, indem Sie folgendes im Projektverzeichnis ausführen:
mvn clean dependency:copy-dependencies
Überprüfen Sie nach erfolgreichem Vorgang, ob die Ordner
target\dependency
erstellt wurden und.jar
-Dateien enthalten.
Erstellen von Umgebungsvariablen
In diesem Beispiel schreiben Sie Ihre Anmeldeinformationen in Umgebungsvariablen auf dem lokalen Computer, auf dem die Anwendung ausgeführt wird.
Öffnen Sie das Azure-Portal. Wenn die Ressource, die Sie im Abschnitt Voraussetzungen erstellt haben, erfolgreich bereitgestellt wurde, wählen Sie unter Nächste Schritte die Option Zu Ressource wechseln aus. Schlüssel und Endpunkt finden Sie unter Ressourcenverwaltung auf der Seite Schlüssel und Endpunkte. Ihr Ressourcenschlüssel ist nicht mit Ihrer Azure-Abonnement-ID identisch.
Um die Umgebungsvariable für Ihren Ressourcenschlüssel und Endpunkt festzulegen, öffnen Sie ein Konsolenfenster und befolgen Sie die Anweisungen für Ihr Betriebssystem und Ihre Entwicklungsumgebung.
- Zum Festlegen der Umgebungsvariablen
VISION_KEY
ersetzen Sie<your_key>
durch einen der Schlüssel für Ihre Ressource. - Zum Festlegen der Umgebungsvariablen
VISION_ENDPOINT
ersetzen Sie<your_endpoint>
durch den Endpunkt für Ihre Ressource.
Wichtig
Wenn Sie einen API-Schlüssel verwenden, speichern Sie ihn an einer anderen Stelle sicher, z. B. in Azure Key Vault. Fügen Sie den API-Schlüssel nicht direkt in Ihren Code ein, und machen Sie ihn nicht öffentlich zugänglich.
Weitere Informationen zur Sicherheit von KI Services finden Sie unter Authentifizieren von Anforderungen an Azure KI Services.
setx VISION_KEY <your_key>
setx VISION_ENDPOINT <your_endpoint>
Nach dem Hinzufügen der Umgebungsvariablen müssen Sie möglicherweise alle ausgeführten Programme neu starten, die die Umgebungsvariablen lesen, z. B. das Konsolenfenster.
Bild analysieren
Öffnen Sie einen Text-Editor, und kopieren Sie den folgenden Inhalt in eine neue Datei. Speichern Sie die Datei unter dem Namen ImageAnalysis.java
import com.azure.ai.vision.imageanalysis.*;
import com.azure.ai.vision.imageanalysis.models.*;
import com.azure.core.credential.KeyCredential;
import java.util.Arrays;
public class ImageAnalysisQuickStart {
public static void main(String[] args) {
String endpoint = System.getenv("VISION_ENDPOINT");
String key = System.getenv("VISION_KEY");
if (endpoint == null || key == null) {
System.out.println("Missing environment variable 'VISION_ENDPOINT' or 'VISION_KEY'.");
System.out.println("Set them before running this sample.");
System.exit(1);
}
// Create a synchronous Image Analysis client.
ImageAnalysisClient client = new ImageAnalysisClientBuilder()
.endpoint(endpoint)
.credential(new KeyCredential(key))
.buildClient();
// This is a synchronous (blocking) call.
ImageAnalysisResult result = client.analyzeFromUrl(
"https://zcusa.951200.xyz/azure/ai-services/computer-vision/media/quickstarts/presentation.png",
Arrays.asList(VisualFeatures.CAPTION, VisualFeatures.READ),
new ImageAnalysisOptions().setGenderNeutralCaption(true));
// Print analysis results to the console
System.out.println("Image analysis results:");
System.out.println(" Caption:");
System.out.println(" \"" + result.getCaption().getText() + "\", Confidence "
+ String.format("%.4f", result.getCaption().getConfidence()));
System.out.println(" Read:");
for (DetectedTextLine line : result.getRead().getBlocks().get(0).getLines()) {
System.out.println(" Line: '" + line.getText()
+ "', Bounding polygon " + line.getBoundingPolygon());
for (DetectedTextWord word : line.getWords()) {
System.out.println(" Word: '" + word.getText()
+ "', Bounding polygon " + word.getBoundingPolygon()
+ ", Confidence " + String.format("%.4f", word.getConfidence()));
}
}
}
}
Tipp
Der Code analysiert ein Bild aus einer URL. Sie können ein Bild auch aus dem Programmspeicherpuffer analysieren. Weitere Informationen finden Sie in der Schrittanleitung für die Bildanalyse.
Führen Sie zum Kompilieren der Java-Datei den folgenden Befehl aus:
javac ImageAnalysis.java -cp ".;target/dependency/*"
Sie sollten sehen, dass die Datei ImageAnalysis.class
im aktuellen Ordner erstellt wurde.
Führen Sie zum Ausführen der Anwendung den folgenden Befehl aus:
java -cp ".;target/dependency/*" ImageAnalysis
Output
In der Konsolenausgabe sollte der folgende Text angezeigt werden:
Image analysis results:
Caption:
"a person pointing at a screen", Confidence 0.7768
Read:
Line: '9:35 AM', Bounding polygon [(x=131, y=130), (x=214, y=130), (x=214, y=148), (x=131, y=148)]
Word: '9:35', Bounding polygon [(x=132, y=130), (x=172, y=131), (x=171, y=149), (x=131, y=148)], Confidence 0.9770
Word: 'AM', Bounding polygon [(x=180, y=131), (x=203, y=131), (x=202, y=149), (x=180, y=149)], Confidence 0.9980
Line: 'Conference room 154584354', Bounding polygon [(x=132, y=153), (x=224, y=153), (x=224, y=161), (x=132, y=160)]
Word: 'Conference', Bounding polygon [(x=143, y=153), (x=174, y=154), (x=174, y=161), (x=143, y=161)], Confidence 0.6930
Word: 'room', Bounding polygon [(x=176, y=154), (x=188, y=154), (x=188, y=161), (x=176, y=161)], Confidence 0.9590
Word: '154584354', Bounding polygon [(x=192, y=154), (x=224, y=154), (x=223, y=161), (x=192, y=161)], Confidence 0.7050
Line: ': 555-123-4567', Bounding polygon [(x=133, y=164), (x=183, y=164), (x=183, y=170), (x=133, y=170)]
Word: ':', Bounding polygon [(x=134, y=165), (x=137, y=165), (x=136, y=171), (x=133, y=171)], Confidence 0.1620
Word: '555-123-4567', Bounding polygon [(x=143, y=165), (x=182, y=165), (x=181, y=171), (x=143, y=171)], Confidence 0.6530
Line: 'Town Hall', Bounding polygon [(x=545, y=178), (x=588, y=179), (x=588, y=190), (x=545, y=190)]
Word: 'Town', Bounding polygon [(x=545, y=179), (x=569, y=180), (x=569, y=190), (x=545, y=190)], Confidence 0.9880
Word: 'Hall', Bounding polygon [(x=571, y=180), (x=589, y=180), (x=589, y=190), (x=571, y=190)], Confidence 0.9900
Line: '9:00 AM - 10:00 AM', Bounding polygon [(x=545, y=191), (x=596, y=191), (x=596, y=199), (x=545, y=198)]
Word: '9:00', Bounding polygon [(x=546, y=191), (x=556, y=192), (x=556, y=199), (x=546, y=199)], Confidence 0.7580
Word: 'AM', Bounding polygon [(x=558, y=192), (x=565, y=192), (x=564, y=199), (x=558, y=199)], Confidence 0.9890
Word: '-', Bounding polygon [(x=567, y=192), (x=570, y=192), (x=569, y=199), (x=567, y=199)], Confidence 0.8960
Word: '10:00', Bounding polygon [(x=571, y=192), (x=585, y=192), (x=585, y=199), (x=571, y=199)], Confidence 0.7970
Word: 'AM', Bounding polygon [(x=587, y=192), (x=594, y=193), (x=593, y=199), (x=586, y=199)], Confidence 0.9940
Line: 'Aaron Blaion', Bounding polygon [(x=542, y=201), (x=581, y=201), (x=581, y=207), (x=542, y=207)]
Word: 'Aaron', Bounding polygon [(x=545, y=201), (x=560, y=202), (x=560, y=208), (x=545, y=208)], Confidence 0.7180
Word: 'Blaion', Bounding polygon [(x=562, y=202), (x=579, y=202), (x=579, y=207), (x=562, y=207)], Confidence 0.2740
Line: 'Daily SCRUM', Bounding polygon [(x=537, y=258), (x=574, y=259), (x=574, y=266), (x=537, y=265)]
Word: 'Daily', Bounding polygon [(x=538, y=259), (x=551, y=259), (x=551, y=266), (x=538, y=265)], Confidence 0.4040
Word: 'SCRUM', Bounding polygon [(x=553, y=259), (x=570, y=260), (x=570, y=265), (x=553, y=266)], Confidence 0.6970
Line: '10:00 AM-11:00 AM', Bounding polygon [(x=535, y=266), (x=589, y=265), (x=589, y=272), (x=535, y=273)]
Word: '10:00', Bounding polygon [(x=539, y=267), (x=553, y=266), (x=552, y=273), (x=539, y=274)], Confidence 0.2190
Word: 'AM-11:00', Bounding polygon [(x=554, y=266), (x=578, y=266), (x=578, y=272), (x=554, y=273)], Confidence 0.1750
Word: 'AM', Bounding polygon [(x=580, y=266), (x=587, y=266), (x=586, y=272), (x=580, y=272)], Confidence 1.0000
Line: 'Charlene de Crum', Bounding polygon [(x=538, y=272), (x=588, y=273), (x=588, y=279), (x=538, y=279)]
Word: 'Charlene', Bounding polygon [(x=538, y=273), (x=562, y=273), (x=562, y=280), (x=538, y=280)], Confidence 0.3220
Word: 'de', Bounding polygon [(x=563, y=273), (x=569, y=273), (x=569, y=280), (x=563, y=280)], Confidence 0.9100
Word: 'Crum', Bounding polygon [(x=570, y=273), (x=582, y=273), (x=583, y=280), (x=571, y=280)], Confidence 0.8710
Line: 'Quarterly NI Handa', Bounding polygon [(x=537, y=295), (x=588, y=295), (x=588, y=302), (x=537, y=302)]
Word: 'Quarterly', Bounding polygon [(x=539, y=296), (x=563, y=296), (x=563, y=302), (x=538, y=302)], Confidence 0.6030
Word: 'NI', Bounding polygon [(x=564, y=296), (x=570, y=296), (x=571, y=302), (x=564, y=302)], Confidence 0.7300
Word: 'Handa', Bounding polygon [(x=572, y=296), (x=588, y=296), (x=588, y=302), (x=572, y=302)], Confidence 0.9050
Line: '11.00 AM-12:00 PM', Bounding polygon [(x=538, y=303), (x=587, y=303), (x=587, y=309), (x=538, y=309)]
Word: '11.00', Bounding polygon [(x=539, y=303), (x=552, y=303), (x=553, y=309), (x=539, y=310)], Confidence 0.6710
Word: 'AM-12:00', Bounding polygon [(x=554, y=303), (x=578, y=303), (x=578, y=309), (x=554, y=309)], Confidence 0.6560
Word: 'PM', Bounding polygon [(x=579, y=303), (x=586, y=303), (x=586, y=309), (x=580, y=309)], Confidence 0.4540
Line: 'Bobek Shemar', Bounding polygon [(x=538, y=310), (x=577, y=310), (x=577, y=316), (x=538, y=316)]
Word: 'Bobek', Bounding polygon [(x=539, y=310), (x=554, y=311), (x=554, y=317), (x=539, y=317)], Confidence 0.6320
Word: 'Shemar', Bounding polygon [(x=556, y=311), (x=576, y=311), (x=577, y=317), (x=556, y=317)], Confidence 0.2190
Line: 'Weekly aband up', Bounding polygon [(x=538, y=332), (x=583, y=333), (x=583, y=339), (x=538, y=338)]
Word: 'Weekly', Bounding polygon [(x=539, y=333), (x=557, y=333), (x=557, y=339), (x=539, y=339)], Confidence 0.5750
Word: 'aband', Bounding polygon [(x=558, y=334), (x=573, y=334), (x=573, y=339), (x=558, y=339)], Confidence 0.4750
Word: 'up', Bounding polygon [(x=574, y=334), (x=580, y=334), (x=580, y=339), (x=574, y=339)], Confidence 0.8650
Line: '12:00 PM-1:00 PM', Bounding polygon [(x=538, y=339), (x=585, y=339), (x=585, y=346), (x=538, y=346)]
Word: '12:00', Bounding polygon [(x=539, y=339), (x=553, y=340), (x=553, y=347), (x=539, y=346)], Confidence 0.7090
Word: 'PM-1:00', Bounding polygon [(x=554, y=340), (x=575, y=340), (x=575, y=346), (x=554, y=347)], Confidence 0.9080
Word: 'PM', Bounding polygon [(x=576, y=340), (x=583, y=340), (x=583, y=346), (x=576, y=346)], Confidence 0.9980
Line: 'Danielle MarchTe', Bounding polygon [(x=538, y=346), (x=583, y=346), (x=583, y=352), (x=538, y=352)]
Word: 'Danielle', Bounding polygon [(x=539, y=347), (x=559, y=347), (x=559, y=352), (x=539, y=353)], Confidence 0.1960
Word: 'MarchTe', Bounding polygon [(x=560, y=347), (x=582, y=347), (x=582, y=352), (x=560, y=352)], Confidence 0.5710
Line: 'Product reviret', Bounding polygon [(x=537, y=370), (x=578, y=370), (x=578, y=375), (x=537, y=375)]
Word: 'Product', Bounding polygon [(x=539, y=370), (x=559, y=370), (x=559, y=376), (x=539, y=375)], Confidence 0.7000
Word: 'reviret', Bounding polygon [(x=560, y=370), (x=578, y=371), (x=578, y=375), (x=560, y=376)], Confidence 0.2180
Bereinigen von Ressourcen
Wenn Sie ein Azure KI Services-Abonnement bereinigen und entfernen möchten, können Sie die Ressource oder die Ressourcengruppe löschen. Wenn Sie die Ressourcengruppe löschen, werden auch alle anderen Ressourcen gelöscht, die ihr zugeordnet sind.
Nächste Schritte
In dieser Schnellstartanleitung haben Sie gelernt, wie Sie das Bildanalyse-Client-SDK installieren und grundlegende Bildanalyseaufrufe durchführen. Als Nächstes erfahren Sie mehr über die Funktionen der API Analysis 4.0.
- Übersicht über die Bildanalyse
- Beispielcode finden Sie auf GitHub.
Verwenden Sie das Bildanalyse-Client-SDK für JavaScript, um Text in einem Bild zu lesen und eine Bildbeschriftung zu generieren. In diesem Schnellstart wird ein Remotebild analysiert und die Ergebnisse in der Konsole ausgegeben.
Referenzdokumentation | Paket (npm) | Beispiele
Tipp
Die API Analysis 4.0 kann viele verschiedene Vorgänge ausführen. In der Anleitung zur Bildanalyse finden Sie Beispiele, die alle verfügbaren Features präsentieren.
Voraussetzungen
- Azure-Abonnement: Kostenloses Azure-Konto
- Die aktuelle Version von Node.js
- Die aktuelle Version von Edge-, Chrome-, Firefox- oder Safari-Internetbrowser.
- Sobald Sie über Ihr Azure-Abonnement verfügen, können Sie im Azure-Portal eine Ressource für maschinelles Sehen erstellen , um Ihren Schlüssel und Endpunkt zu erhalten. Um das Beschriftungsfeature in diesem Schnellstart verwenden zu können, müssen Sie Ihre Ressource in einer der unterstützten Azure-Regionen erstellen (siehe Bildbeschriftungen für die Liste der Regionen). Wählen Sie nach Abschluss der Bereitstellung Zu Ressource wechseln aus.
- Sie benötigen den Schlüssel und den Endpunkt der von Ihnen erstellten Ressource, um Ihre Anwendung mit dem Azure KI Vision-Dienst zu verbinden.
- Sie können den kostenlosen Tarif (
F0
) verwenden, um den Dienst zu testen, und später für die Produktion auf einen kostenpflichtigen Tarif upgraden.
Erstellen von Umgebungsvariablen
In diesem Beispiel schreiben Sie Ihre Anmeldeinformationen in Umgebungsvariablen auf dem lokalen Computer, auf dem die Anwendung ausgeführt wird.
Öffnen Sie das Azure-Portal. Wenn die Ressource, die Sie im Abschnitt Voraussetzungen erstellt haben, erfolgreich bereitgestellt wurde, wählen Sie unter Nächste Schritte die Option Zu Ressource wechseln aus. Schlüssel und Endpunkt finden Sie unter Ressourcenverwaltung auf der Seite Schlüssel und Endpunkte. Ihr Ressourcenschlüssel ist nicht mit Ihrer Azure-Abonnement-ID identisch.
Um die Umgebungsvariable für Ihren Ressourcenschlüssel und Endpunkt festzulegen, öffnen Sie ein Konsolenfenster und befolgen Sie die Anweisungen für Ihr Betriebssystem und Ihre Entwicklungsumgebung.
- Zum Festlegen der Umgebungsvariablen
VISION_KEY
ersetzen Sie<your_key>
durch einen der Schlüssel für Ihre Ressource. - Zum Festlegen der Umgebungsvariablen
VISION_ENDPOINT
ersetzen Sie<your_endpoint>
durch den Endpunkt für Ihre Ressource.
Wichtig
Wenn Sie einen API-Schlüssel verwenden, speichern Sie ihn an einer anderen Stelle sicher, z. B. in Azure Key Vault. Fügen Sie den API-Schlüssel nicht direkt in Ihren Code ein, und machen Sie ihn nicht öffentlich zugänglich.
Weitere Informationen zur Sicherheit von KI Services finden Sie unter Authentifizieren von Anforderungen an Azure KI Services.
setx VISION_KEY <your_key>
setx VISION_ENDPOINT <your_endpoint>
Nach dem Hinzufügen der Umgebungsvariablen müssen Sie möglicherweise alle ausgeführten Programme neu starten, die die Umgebungsvariablen lesen, z. B. das Konsolenfenster.
Bild analysieren
Erstellen einer neuen Node.js-Anwendung
Erstellen Sie in einem Konsolenfenster (etwa cmd, PowerShell oder Bash) ein neues Verzeichnis für Ihre App, und rufen Sie es auf.
mkdir myapp && cd myapp
Führen Sie den Befehl
npm init
aus, um eine Knotenanwendung mit der Dateipackage.json
zu erstellen.npm init
Installieren der Clientbibliothek
Installieren Sie das npm-Paket
@azure-rest/ai-vision-image-analysis
:npm install @azure-rest/ai-vision-image-analysis
Installieren Sie außerdem das dotenv-Paket:
npm install dotenv
Die Datei
package.json
Ihrer App wird mit den Abhängigkeiten aktualisiert.Erstellen Sie eine neue Datei index.js. Öffnen Sie sie in einem Text-Editor, und fügen Sie den folgenden Code ein.
const { ImageAnalysisClient } = require('@azure-rest/ai-vision-image-analysis'); const createClient = require('@azure-rest/ai-vision-image-analysis').default; const { AzureKeyCredential } = require('@azure/core-auth'); // Load the .env file if it exists require("dotenv").config(); const endpoint = process.env['VISION_ENDPOINT']; const key = process.env['VISION_KEY']; const credential = new AzureKeyCredential(key); const client = createClient(endpoint, credential); const features = [ 'Caption', 'Read' ]; const imageUrl = 'https://zcusa.951200.xyz/azure/ai-services/computer-vision/media/quickstarts/presentation.png'; async function analyzeImageFromUrl() { const result = await client.path('/imageanalysis:analyze').post({ body: { url: imageUrl }, queryParameters: { features: features }, contentType: 'application/json' }); const iaResult = result.body; if (iaResult.captionResult) { console.log(`Caption: ${iaResult.captionResult.text} (confidence: ${iaResult.captionResult.confidence})`); } if (iaResult.readResult) { iaResult.readResult.blocks.forEach(block => console.log(`Text Block: ${JSON.stringify(block)}`)); } } analyzeImageFromUrl();
Führen Sie die Anwendung mit dem Befehl
node
für die Schnellstartdatei aus.node index.js
Bereinigen von Ressourcen
Wenn Sie ein Azure KI Services-Abonnement bereinigen und entfernen möchten, können Sie die Ressource oder die Ressourcengruppe löschen. Wenn Sie die Ressourcengruppe löschen, werden auch alle anderen Ressourcen gelöscht, die ihr zugeordnet sind.
Nächste Schritte
In dieser Schnellstartanleitung haben Sie gelernt, wie Sie die Bildanalyse-Clientbibliothek installieren und grundlegende Bildanalyseaufrufe durchführen. Als Nächstes erfahren Sie mehr über die Funktionen der Analyse-API.
- Übersicht über die Bildanalyse
- Den Quellcode für dieses Beispiel finden Sie auf GitHub.
Verwenden Sie die Bildanalyse-REST-API, um Text im Bild zu lesen und Untertitel zu erstellen (nur Version 4.0).
Tipp
Die API Analysis 4.0 kann viele verschiedene Vorgänge ausführen. In der Anleitung zur Bildanalyse finden Sie Beispiele, die alle verfügbaren Features präsentieren.
Voraussetzungen
- Azure-Abonnement: Kostenloses Azure-Konto
- Sobald Sie über Ihr Azure-Abonnement verfügen, können Sie im Azure-Portal eine Ressource für maschinelles Sehen erstellen , um Ihren Schlüssel und Endpunkt zu erhalten. Um die Untertitelungsfunktion in diesem Schnellstart zu nutzen, müssen Sie Ihre Ressource in bestimmten Azure-Regionen erstellen. Weitere Informationen finden Sie unter Regionale Verfügbarkeit. Wählen Sie nach Abschluss der Bereitstellung Zu Ressource wechseln aus.
- Sie benötigen den Schlüssel und den Endpunkt der von Ihnen erstellten Ressource, um Ihre Anwendung mit dem Azure KI Vision-Dienst zu verbinden. Der Schlüssel und der Endpunkt werden weiter unten in der Schnellstartanleitung in den Code eingefügt.
- Sie können den kostenlosen Tarif (
F0
) verwenden, um den Dienst zu testen, und später für die Produktion auf einen kostenpflichtigen Tarif upgraden.
- cURL muss installiert sein.
Analysieren von Bildern
Gehen Sie wie folgt vor, um verschiedene visuelle Features eines Bilds zu analysieren:
Kopieren Sie den folgenden
curl
-Befehl, und fügen Sie ihn in einen Text-Editor ein.curl.exe -H "Ocp-Apim-Subscription-Key: <subscriptionKey>" -H "Content-Type: application/json" "<endpoint>/computervision/imageanalysis:analyze?features=caption,read&model-version=latest&language=en&api-version=2024-02-01" -d "{'url':'https://zcusa.951200.xyz/azure/ai-services/computer-vision/media/quickstarts/presentation.png'}"
Nehmen Sie die folgenden Änderungen im Befehl vor, falls dies erforderlich ist:
- Ersetzen Sie den Wert
<subscriptionKey>
durch Ihren Vision-Ressourcenschlüssel. - Ersetzen Sie den Wert von
<endpoint>
durch Ihre Vision-Ressourcenendpunkt-URL. Beispiel:https://YourResourceName.cognitiveservices.azure.com
- Ändern Sie optional die Bild-URL im Anforderungstext (
https://zcusa.951200.xyz/azure/ai-services/computer-vision/media/quickstarts/presentation.png
) in die URL eines anderen Bilds, das analysiert werden soll.
- Ersetzen Sie den Wert
Öffnen Sie ein Eingabeaufforderungsfenster.
Fügen Sie den von Ihnen bearbeiteten
curl
-Befehl aus dem Text-Editor in das Eingabeaufforderungsfenster ein, und führen Sie den Befehl aus.
Untersuchen der Antwort
Es wird eine erfolgreiche Antwort im JSON-Format zurückgegeben, wie im folgenden Beispiel gezeigt:
{
"modelVersion": "2023-10-01",
"captionResult":
{
"text": "a man pointing at a screen",
"confidence": 0.7767987847328186
},
"metadata":
{
"width": 1038,
"height": 692
},
"readResult":
{
"blocks":
[
{
"lines":
[
{
"text": "9:35 AM",
"boundingPolygon": [{"x":131,"y":130},{"x":214,"y":130},{"x":214,"y":148},{"x":131,"y":148}],
"words": [{"text":"9:35","boundingPolygon":[{"x":132,"y":130},{"x":172,"y":131},{"x":171,"y":149},{"x":131,"y":148}],"confidence":0.977},{"text":"AM","boundingPolygon":[{"x":180,"y":131},{"x":203,"y":131},{"x":202,"y":149},{"x":180,"y":149}],"confidence":0.998}]
},
{
"text": "Conference room 154584354",
"boundingPolygon": [{"x":132,"y":153},{"x":224,"y":153},{"x":224,"y":161},{"x":132,"y":160}],
"words": [{"text":"Conference","boundingPolygon":[{"x":143,"y":153},{"x":174,"y":154},{"x":174,"y":161},{"x":143,"y":161}],"confidence":0.693},{"text":"room","boundingPolygon":[{"x":176,"y":154},{"x":188,"y":154},{"x":188,"y":161},{"x":176,"y":161}],"confidence":0.959},{"text":"154584354","boundingPolygon":[{"x":192,"y":154},{"x":224,"y":154},{"x":223,"y":161},{"x":192,"y":161}],"confidence":0.705}]
},
{
"text": ": 555-123-4567",
"boundingPolygon": [{"x":133,"y":164},{"x":183,"y":164},{"x":183,"y":170},{"x":133,"y":170}],
"words": [{"text":":","boundingPolygon":[{"x":134,"y":165},{"x":137,"y":165},{"x":136,"y":171},{"x":133,"y":171}],"confidence":0.162},{"text":"555-123-4567","boundingPolygon":[{"x":143,"y":165},{"x":182,"y":165},{"x":181,"y":171},{"x":143,"y":171}],"confidence":0.653}]
},
{
"text": "Town Hall",
"boundingPolygon": [{"x":545,"y":178},{"x":588,"y":179},{"x":588,"y":190},{"x":545,"y":190}],
"words": [{"text":"Town","boundingPolygon":[{"x":545,"y":179},{"x":569,"y":180},{"x":569,"y":190},{"x":545,"y":190}],"confidence":0.988},{"text":"Hall","boundingPolygon":[{"x":571,"y":180},{"x":589,"y":180},{"x":589,"y":190},{"x":571,"y":190}],"confidence":0.99}]
},
{
"text": "9:00 AM - 10:00 AM",
"boundingPolygon": [{"x":545,"y":191},{"x":596,"y":191},{"x":596,"y":199},{"x":545,"y":198}],
"words": [{"text":"9:00","boundingPolygon":[{"x":546,"y":191},{"x":556,"y":192},{"x":556,"y":199},{"x":546,"y":199}],"confidence":0.758},{"text":"AM","boundingPolygon":[{"x":558,"y":192},{"x":565,"y":192},{"x":564,"y":199},{"x":558,"y":199}],"confidence":0.989},{"text":"-","boundingPolygon":[{"x":567,"y":192},{"x":570,"y":192},{"x":569,"y":199},{"x":567,"y":199}],"confidence":0.896},{"text":"10:00","boundingPolygon":[{"x":571,"y":192},{"x":585,"y":192},{"x":585,"y":199},{"x":571,"y":199}],"confidence":0.797},{"text":"AM","boundingPolygon":[{"x":587,"y":192},{"x":594,"y":193},{"x":593,"y":199},{"x":586,"y":199}],"confidence":0.994}]
},
{
"text": "Aaron Blaion",
"boundingPolygon": [{"x":542,"y":201},{"x":581,"y":201},{"x":581,"y":207},{"x":542,"y":207}],
"words": [{"text":"Aaron","boundingPolygon":[{"x":545,"y":201},{"x":560,"y":202},{"x":560,"y":208},{"x":545,"y":208}],"confidence":0.718},{"text":"Blaion","boundingPolygon":[{"x":562,"y":202},{"x":579,"y":202},{"x":579,"y":207},{"x":562,"y":207}],"confidence":0.274}]
},
{
"text": "Daily SCRUM",
"boundingPolygon": [{"x":537,"y":258},{"x":574,"y":259},{"x":574,"y":266},{"x":537,"y":265}],
"words": [{"text":"Daily","boundingPolygon":[{"x":538,"y":259},{"x":551,"y":259},{"x":551,"y":266},{"x":538,"y":265}],"confidence":0.404},{"text":"SCRUM","boundingPolygon":[{"x":553,"y":259},{"x":570,"y":260},{"x":570,"y":265},{"x":553,"y":266}],"confidence":0.697}]
},
{
"text": "10:00 AM-11:00 AM",
"boundingPolygon": [{"x":535,"y":266},{"x":589,"y":265},{"x":589,"y":272},{"x":535,"y":273}],
"words": [{"text":"10:00","boundingPolygon":[{"x":539,"y":267},{"x":553,"y":266},{"x":552,"y":273},{"x":539,"y":274}],"confidence":0.219},{"text":"AM-11:00","boundingPolygon":[{"x":554,"y":266},{"x":578,"y":266},{"x":578,"y":272},{"x":554,"y":273}],"confidence":0.175},{"text":"AM","boundingPolygon":[{"x":580,"y":266},{"x":587,"y":266},{"x":586,"y":272},{"x":580,"y":272}],"confidence":1}]
},
{
"text": "Charlene de Crum",
"boundingPolygon": [{"x":538,"y":272},{"x":588,"y":273},{"x":588,"y":279},{"x":538,"y":279}],
"words": [{"text":"Charlene","boundingPolygon":[{"x":538,"y":273},{"x":562,"y":273},{"x":562,"y":280},{"x":538,"y":280}],"confidence":0.322},{"text":"de","boundingPolygon":[{"x":563,"y":273},{"x":569,"y":273},{"x":569,"y":280},{"x":563,"y":280}],"confidence":0.91},{"text":"Crum","boundingPolygon":[{"x":570,"y":273},{"x":582,"y":273},{"x":583,"y":280},{"x":571,"y":280}],"confidence":0.871}]
},
{
"text": "Quarterly NI Handa",
"boundingPolygon": [{"x":537,"y":295},{"x":588,"y":295},{"x":588,"y":302},{"x":537,"y":302}],
"words": [{"text":"Quarterly","boundingPolygon":[{"x":539,"y":296},{"x":563,"y":296},{"x":563,"y":302},{"x":538,"y":302}],"confidence":0.603},{"text":"NI","boundingPolygon":[{"x":564,"y":296},{"x":570,"y":296},{"x":571,"y":302},{"x":564,"y":302}],"confidence":0.73},{"text":"Handa","boundingPolygon":[{"x":572,"y":296},{"x":588,"y":296},{"x":588,"y":302},{"x":572,"y":302}],"confidence":0.905}]
},
{
"text": "11.00 AM-12:00 PM",
"boundingPolygon": [{"x":538,"y":303},{"x":587,"y":303},{"x":587,"y":309},{"x":538,"y":309}],
"words": [{"text":"11.00","boundingPolygon":[{"x":539,"y":303},{"x":552,"y":303},{"x":553,"y":309},{"x":539,"y":310}],"confidence":0.671},{"text":"AM-12:00","boundingPolygon":[{"x":554,"y":303},{"x":578,"y":303},{"x":578,"y":309},{"x":554,"y":309}],"confidence":0.656},{"text":"PM","boundingPolygon":[{"x":579,"y":303},{"x":586,"y":303},{"x":586,"y":309},{"x":580,"y":309}],"confidence":0.454}]
},
{
"text": "Bobek Shemar",
"boundingPolygon": [{"x":538,"y":310},{"x":577,"y":310},{"x":577,"y":316},{"x":538,"y":316}],
"words": [{"text":"Bobek","boundingPolygon":[{"x":539,"y":310},{"x":554,"y":311},{"x":554,"y":317},{"x":539,"y":317}],"confidence":0.632},{"text":"Shemar","boundingPolygon":[{"x":556,"y":311},{"x":576,"y":311},{"x":577,"y":317},{"x":556,"y":317}],"confidence":0.219}]
},
{
"text": "Weekly aband up",
"boundingPolygon": [{"x":538,"y":332},{"x":583,"y":333},{"x":583,"y":339},{"x":538,"y":338}],
"words": [{"text":"Weekly","boundingPolygon":[{"x":539,"y":333},{"x":557,"y":333},{"x":557,"y":339},{"x":539,"y":339}],"confidence":0.575},{"text":"aband","boundingPolygon":[{"x":558,"y":334},{"x":573,"y":334},{"x":573,"y":339},{"x":558,"y":339}],"confidence":0.475},{"text":"up","boundingPolygon":[{"x":574,"y":334},{"x":580,"y":334},{"x":580,"y":339},{"x":574,"y":339}],"confidence":0.865}]
},
{
"text": "12:00 PM-1:00 PM",
"boundingPolygon": [{"x":538,"y":339},{"x":585,"y":339},{"x":585,"y":346},{"x":538,"y":346}],
"words": [{"text":"12:00","boundingPolygon":[{"x":539,"y":339},{"x":553,"y":340},{"x":553,"y":347},{"x":539,"y":346}],"confidence":0.709},{"text":"PM-1:00","boundingPolygon":[{"x":554,"y":340},{"x":575,"y":340},{"x":575,"y":346},{"x":554,"y":347}],"confidence":0.908},{"text":"PM","boundingPolygon":[{"x":576,"y":340},{"x":583,"y":340},{"x":583,"y":346},{"x":576,"y":346}],"confidence":0.998}]
},
{
"text": "Danielle MarchTe",
"boundingPolygon": [{"x":538,"y":346},{"x":583,"y":346},{"x":583,"y":352},{"x":538,"y":352}],
"words": [{"text":"Danielle","boundingPolygon":[{"x":539,"y":347},{"x":559,"y":347},{"x":559,"y":352},{"x":539,"y":353}],"confidence":0.196},{"text":"MarchTe","boundingPolygon":[{"x":560,"y":347},{"x":582,"y":347},{"x":582,"y":352},{"x":560,"y":352}],"confidence":0.571}]
},
{
"text": "Product reviret",
"boundingPolygon": [{"x":537,"y":370},{"x":578,"y":370},{"x":578,"y":375},{"x":537,"y":375}],
"words": [{"text":"Product","boundingPolygon":[{"x":539,"y":370},{"x":559,"y":370},{"x":559,"y":376},{"x":539,"y":375}],"confidence":0.7},{"text":"reviret","boundingPolygon":[{"x":560,"y":370},{"x":578,"y":371},{"x":578,"y":375},{"x":560,"y":376}],"confidence":0.218}]
}
]
}
]
}
}
Nächste Schritte
In dieser Schnellstartanleitung haben Sie gelernt, wie Sie mithilfe der REST-API grundlegende Bildanalyseaufrufe durchführen. Als Nächstes erfahren Sie mehr über die Funktionen der API Analysis 4.0.
Voraussetzungen
- Melden Sie sich mit Ihrem Azure-Abonnement und der Azure KI Services-Ressource bei Vision Studio an. Wenn Sie Hilfe bei diesem Schritt benötigen, lesen Sie den Abschnitt Erste Schritte in der Übersicht.
Analysieren von Bildern
- Wählen Sie die Registerkarte Bilder analysieren und den mit Allgemeine Tags aus Bildern extrahieren betitelten Bereich aus.
- Um die Demoumgebung auszuprobieren, müssen Sie eine Ressource auswählen und bestätigen. Daraus resultiert eine Nutzung gemäß Ihres Tarifs.
- Wählen Sie ein Bild aus dem verfügbaren Satz aus, oder laden Sie ein eigenes Bild hoch.
- Nachdem Sie Ihr Bild ausgewählt haben, werden die erkannten Tags zusammen mit ihren Konfidenzbewertungen im Ausgabefenster angezeigt. Sie können auch die Registerkarte JSON auswählen, um die JSON-Ausgabe anzuzeigen, die vom API-Aufruf zurückgegeben wird.
- Unterhalb der Demoumgebung finden Sie die nächsten Schritte, um mit der Verwendung dieser Funktion in Ihrer eigenen Anwendung zu beginnen.
Nächste Schritte
In diesem Schnellstart haben Sie mit Vision Studio eine grundlegende Bildanalyseaufgabe ausgeführt. Als Nächstes erfahren Sie mehr über die Funktionen der Bildanalyse-API.