Freigeben über


Upgrade der Modellverwaltung auf SDK v2

Dieser Artikel enthält einen Vergleich der Szenarien in SDK v1 und SDK v2.

Erstellen eines Modells

  • SDK v1

    import urllib.request
    from azureml.core.model import Model
    
    # Register model
    model = Model.register(ws, model_name="local-file-example", model_path="mlflow-model/model.pkl")
    
  • SDK v2

    from azure.ai.ml.entities import Model
    from azure.ai.ml.constants import AssetTypes
    
    file_model = Model(
        path="mlflow-model/model.pkl",
        type=AssetTypes.CUSTOM_MODEL,
        name="local-file-example",
        description="Model created from local file."
    )
    ml_client.models.create_or_update(file_model)
    

Verwenden eines Modells in einem Experiment/Auftrag

  • SDK v1

    model = run.register_model(model_name='run-model-example',
                               model_path='outputs/model/')
    print(model.name, model.id, model.version, sep='\t')
    
  • SDK v2

    from azure.ai.ml.entities import Model
    from azure.ai.ml.constants import AssetTypes
    
    run_model = Model(
        path="azureml://jobs/$RUN_ID/outputs/artifacts/paths/model/",
        name="run-model-example",
        description="Model created from run.",
        type=AssetTypes.CUSTOM_MODEL
    )
    
    ml_client.models.create_or_update(run_model)
    

Weitere Informationen zu Modellen finden Sie unter Arbeiten mit Modellen in Azure Machine Learning.

Zuordnung der wichtigsten Funktionen in SDK v1 und SDK v2

Funktionalität im SDK v1 Grobe Zuordnung in SDK v2
Model.register ml_client.models.create_or_update
run.register_model ml_client.models.create_or_update
Model.deploy ml_client.begin_create_or_update(blue_deployment)

Nächste Schritte

Weitere Informationen finden Sie in folgender Dokumentation: