Freigeben über


ConversionsCatalog.MapKeyToBinaryVector Methode

Definition

Erstellen Sie eine KeyToBinaryVectorMappingEstimator, die Schlüsseltypen in ihre entsprechende binäre Darstellung des ursprünglichen Werts konvertiert.

public static Microsoft.ML.Transforms.KeyToBinaryVectorMappingEstimator MapKeyToBinaryVector (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, string inputColumnName = default);
static member MapKeyToBinaryVector : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * string -> Microsoft.ML.Transforms.KeyToBinaryVectorMappingEstimator
<Extension()>
Public Function MapKeyToBinaryVector (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, Optional inputColumnName As String = Nothing) As KeyToBinaryVectorMappingEstimator

Parameter

catalog
TransformsCatalog.ConversionTransforms

Katalog der kategorisierten Transformation.

outputColumnName
String

Name der Spalte, die aus der Transformation von inputColumnName. Der Datentyp ist ein bekannter Größenvektor, der Single den Eingabewert darstellt.

inputColumnName
String

Name der Spalte, die transformiert werden soll. nullWenn festgelegt auf , wird der Wert des outputColumnName Werts als Quelle verwendet. Der Datentyp ist ein Schlüssel oder ein bekannter Vektor von Schlüsseln.

Gibt zurück

Beispiele

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    class MapKeyToBinaryVector
    {
        /// This example demonstrates the use of MapKeyToVector by mapping keys to
        /// floats[] of 0 and 1, representing the number in binary format.
        /// Because the ML.NET KeyType maps the missing value to zero, counting
        /// starts at 1, so the uint values converted to KeyTypes will appear
        /// skewed by one.
        /// See https://github.com/dotnet/machinelearning/blob/main/docs/code/IDataViewTypeSystem.md#key-types
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Get a small dataset as an IEnumerable.
            var rawData = new[] {
                new DataPoint() { Timeframe = 9 },
                new DataPoint() { Timeframe = 8 },
                new DataPoint() { Timeframe = 8 },
                new DataPoint() { Timeframe = 9 },
                new DataPoint() { Timeframe = 2 },
                new DataPoint() { Timeframe = 3 }
            };

            var data = mlContext.Data.LoadFromEnumerable(rawData);

            // Constructs the ML.net pipeline
            var pipeline = mlContext.Transforms.Conversion.MapKeyToBinaryVector(
                "TimeframeVector", "Timeframe");

            // Fits the pipeline to the data.
            IDataView transformedData = pipeline.Fit(data).Transform(data);

            // Getting the resulting data as an IEnumerable.
            // This will contain the newly created columns.
            IEnumerable<TransformedData> features = mlContext.Data.CreateEnumerable<
                TransformedData>(transformedData, reuseRowObject: false);

            Console.WriteLine($" Timeframe           TimeframeVector");
            foreach (var featureRow in features)
                Console.WriteLine($"{featureRow.Timeframe}\t\t\t" +
                    $"{string.Join(',', featureRow.TimeframeVector)}");

            // Timeframe             TimeframeVector
            // 10                      0,1,0,0,1 //binary representation of 9, the original value
            // 9                       0,1,0,0,0 //binary representation of 8, the original value
            // 9                       0,1,0,0,0
            // 10                      0,1,0,0,1
            // 3                       0,0,0,1,0
            // 4                       0,0,0,1,1
        }

        private class DataPoint
        {
            [KeyType(10)]
            public uint Timeframe { get; set; }

        }

        private class TransformedData : DataPoint
        {
            public float[] TimeframeVector { get; set; }
        }
    }
}

Gilt für: