ExtensionsCatalog.IndicateMissingValues Methode
Definition
Wichtig
Einige Informationen beziehen sich auf Vorabversionen, die vor dem Release ggf. grundlegend überarbeitet werden. Microsoft übernimmt hinsichtlich der hier bereitgestellten Informationen keine Gewährleistungen, seien sie ausdrücklich oder konkludent.
Überlädt
IndicateMissingValues(TransformsCatalog, InputOutputColumnPair[]) |
Erstellen Sie eine MissingValueIndicatorEstimator, die die Daten aus der spalte kopiert, die in InputColumnName einer neuen Spalte angegeben ist: OutputColumnName |
IndicateMissingValues(TransformsCatalog, String, String) |
Erstellen Sie einen MissingValueIndicatorEstimatorWert, der die Daten aus der in der Spalte angegebenen Spalte durchsucht und neue Spalte ausfüllt, die mit |
IndicateMissingValues(TransformsCatalog, InputOutputColumnPair[])
Erstellen Sie eine MissingValueIndicatorEstimator, die die Daten aus der spalte kopiert, die in InputColumnName einer neuen Spalte angegeben ist: OutputColumnName
public static Microsoft.ML.Transforms.MissingValueIndicatorEstimator IndicateMissingValues (this Microsoft.ML.TransformsCatalog catalog, Microsoft.ML.InputOutputColumnPair[] columns);
static member IndicateMissingValues : Microsoft.ML.TransformsCatalog * Microsoft.ML.InputOutputColumnPair[] -> Microsoft.ML.Transforms.MissingValueIndicatorEstimator
<Extension()>
Public Function IndicateMissingValues (catalog As TransformsCatalog, columns As InputOutputColumnPair()) As MissingValueIndicatorEstimator
Parameter
- catalog
- TransformsCatalog
Der Katalog der Transformation.
- columns
- InputOutputColumnPair[]
Die Paare der Eingabe- und Ausgabespalten. Dieser Stimator betreibt Daten, die entweder skalar oder Vektor von Single oder .Double
Gibt zurück
Beispiele
using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class IndicateMissingValuesMultiColumn
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable and convert it to an IDataView.
var samples = new List<DataPoint>()
{
new DataPoint(){ Features1 = new float[3] {1, 1, 0}, Features2 =
new float[2] {1, 1} },
new DataPoint(){ Features1 = new float[3] {0, float.NaN, 1},
Features2 = new float[2] {float.NaN, 1} },
new DataPoint(){ Features1 = new float[3] {-1, float.NaN, -3},
Features2 = new float[2] {1, float.PositiveInfinity} },
};
var data = mlContext.Data.LoadFromEnumerable(samples);
// IndicateMissingValues is used to create a boolean containing 'true'
// where the value in the input column is missing. For floats and
// doubles, missing values are NaN. We can use an array of
// InputOutputColumnPair to apply the MissingValueIndicatorEstimator
// to multiple columns in one pass over the data.
var pipeline = mlContext.Transforms.IndicateMissingValues(new[] {
new InputOutputColumnPair("MissingIndicator1", "Features1"),
new InputOutputColumnPair("MissingIndicator2", "Features2")
});
// Now we can transform the data and look at the output to confirm the
// behavior of the estimator. This operation doesn't actually evaluate
// data until we read the data below.
var tansformer = pipeline.Fit(data);
var transformedData = tansformer.Transform(data);
// We can extract the newly created column as an IEnumerable of
// SampleDataTransformed, the class we define below.
var rowEnumerable = mlContext.Data.CreateEnumerable<
SampleDataTransformed>(transformedData, reuseRowObject: false);
// And finally, we can write out the rows of the dataset, looking at the
// columns of interest.
foreach (var row in rowEnumerable)
Console.WriteLine("Features1: [" + string.Join(", ", row
.Features1) + "]\t MissingIndicator1: [" + string.Join(", ",
row.MissingIndicator1) + "]\t Features2: [" + string.Join(", ",
row.Features2) + "]\t MissingIndicator2: [" + string.Join(", ",
row.MissingIndicator2) + "]");
// Expected output:
// Features1: [1, 1, 0] MissingIndicator1: [False, False, False] Features2: [1, 1] MissingIndicator2: [False, False]
// Features1: [0, NaN, 1] MissingIndicator1: [False, True, False] Features2: [NaN, 1] MissingIndicator2: [True, False]
// Features1: [-1, NaN, -3] MissingIndicator1: [False, True, False] Features2: [1, ∞] MissingIndicator2: [False, False]
}
private class DataPoint
{
[VectorType(3)]
public float[] Features1 { get; set; }
[VectorType(2)]
public float[] Features2 { get; set; }
}
private sealed class SampleDataTransformed : DataPoint
{
public bool[] MissingIndicator1 { get; set; }
public bool[] MissingIndicator2 { get; set; }
}
}
}
Hinweise
Diese Transformation kann über mehrere Spalten ausgeführt werden.
Gilt für:
IndicateMissingValues(TransformsCatalog, String, String)
Erstellen Sie einen MissingValueIndicatorEstimatorWert, der die Daten aus der in der Spalte angegebenen Spalte durchsucht und neue Spalte ausfüllt, die mit outputColumnName
dem Vektor von Bools angegeben inputColumnName
ist, bei dem i-th bool wert true
ist, wenn das i-th-Element in Spaltendaten einen fehlenden Wert hat und false
andernfalls.
public static Microsoft.ML.Transforms.MissingValueIndicatorEstimator IndicateMissingValues (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default);
static member IndicateMissingValues : Microsoft.ML.TransformsCatalog * string * string -> Microsoft.ML.Transforms.MissingValueIndicatorEstimator
<Extension()>
Public Function IndicateMissingValues (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing) As MissingValueIndicatorEstimator
Parameter
- catalog
- TransformsCatalog
Der Katalog der Transformation.
- outputColumnName
- String
Name der Spalte, die aus der Transformation von inputColumnName
.
Der Datentyp dieser Spalte ist ein Vektor von Boolean.
- inputColumnName
- String
Name der Spalte, aus der die Daten kopiert werden sollen. Dieser Schätzwert wird über Skalar oder Vektor von Single oder .Double
Gibt zurück
Beispiele
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class IndicateMissingValues
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable and convert it to an IDataView.
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[3] {1, 1, 0} },
new DataPoint(){ Features = new float[3] {0, float.NaN, 1} },
new DataPoint(){ Features = new float[3] {-1, float.NaN, -3} },
};
var data = mlContext.Data.LoadFromEnumerable(samples);
// IndicateMissingValues is used to create a boolean containing 'true'
// where the value in the input column is missing. For floats and
// doubles, missing values are represented as NaN.
var pipeline = mlContext.Transforms.IndicateMissingValues(
"MissingIndicator", "Features");
// Now we can transform the data and look at the output to confirm the
// behavior of the estimator. This operation doesn't actually evaluate
// data until we read the data below.
var tansformer = pipeline.Fit(data);
var transformedData = tansformer.Transform(data);
// We can extract the newly created column as an IEnumerable of
// SampleDataTransformed, the class we define below.
var rowEnumerable = mlContext.Data.CreateEnumerable<
SampleDataTransformed>(transformedData, reuseRowObject: false);
// And finally, we can write out the rows of the dataset, looking at the
// columns of interest.
foreach (var row in rowEnumerable)
Console.WriteLine("Features: [" + string.Join(", ", row.Features) +
"]\t MissingIndicator: [" + string.Join(", ", row
.MissingIndicator) + "]");
// Expected output:
// Features: [1, 1, 0] MissingIndicator: [False, False, False]
// Features: [0, NaN, 1] MissingIndicator: [False, True, False]
// Features: [-1, NaN, -3] MissingIndicator: [False, True, False]
}
private class DataPoint
{
[VectorType(3)]
public float[] Features { get; set; }
}
private sealed class SampleDataTransformed : DataPoint
{
public bool[] MissingIndicator { get; set; }
}
}
}