Freigeben über


TextLoaderSaverCatalog.SaveAsText Methode

Definition

Speichern Sie den IDataView Text als Text.

public static void SaveAsText (this Microsoft.ML.DataOperationsCatalog catalog, Microsoft.ML.IDataView data, System.IO.Stream stream, char separatorChar = '\t', bool headerRow = true, bool schema = true, bool keepHidden = false, bool forceDense = false);
static member SaveAsText : Microsoft.ML.DataOperationsCatalog * Microsoft.ML.IDataView * System.IO.Stream * char * bool * bool * bool * bool -> unit
<Extension()>
Public Sub SaveAsText (catalog As DataOperationsCatalog, data As IDataView, stream As Stream, Optional separatorChar As Char = '\t', Optional headerRow As Boolean = true, Optional schema As Boolean = true, Optional keepHidden As Boolean = false, Optional forceDense As Boolean = false)

Parameter

data
IDataView

Die datenansicht, die gespeichert werden soll.

stream
Stream

Der Stream, in den geschrieben werden soll.

separatorChar
Char

Das Spaltentrennzeichen.

headerRow
Boolean

Gibt an, ob die Kopfzeile geschrieben werden soll.

schema
Boolean

Gibt an, ob der Kopfzeilenkommentar mit dem Schema geschrieben werden soll.

keepHidden
Boolean

Gibt an, ob ausgeblendete Spalten im Dataset beibehalten werden sollen.

forceDense
Boolean

Gibt an, ob Spalten im dichten Format gespeichert werden sollen, auch wenn sie sparse Vektoren sind.

Beispiele

using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;

namespace Samples.Dynamic
{
    public static class SaveAndLoadFromText
    {
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = new List<DataPoint>()
            {
                new DataPoint(){ Label = 0, Features = 4},
                new DataPoint(){ Label = 0, Features = 5},
                new DataPoint(){ Label = 0, Features = 6},
                new DataPoint(){ Label = 1, Features = 8},
                new DataPoint(){ Label = 1, Features = 9},
            };

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            IDataView data = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Create a FileStream object and write the IDataView to it as a text
            // file.
            using (FileStream stream = new FileStream("data.tsv", FileMode.Create))
                mlContext.Data.SaveAsText(data, stream);

            // Create an IDataView object by loading the text file.
            IDataView loadedData = mlContext.Data.LoadFromTextFile("data.tsv");

            // Inspect the data that is loaded from the previously saved text file.
            var loadedDataEnumerable = mlContext.Data
                .CreateEnumerable<DataPoint>(loadedData, reuseRowObject: false);

            foreach (DataPoint row in loadedDataEnumerable)
                Console.WriteLine($"{row.Label}, {row.Features}");

            // Preview of the loaded data.
            // 0, 4
            // 0, 5
            // 0, 6
            // 1, 8
            // 1, 9
        }

        // Example with label and feature values. A data set is a collection of such
        // examples.
        private class DataPoint
        {
            public float Label { get; set; }

            public float Features { get; set; }
        }
    }
}

Gilt für: