Freigeben über


LightGbmRankingTrainer Klasse

Definition

Für die IEstimator<TTransformer> Schulung eines verbesserten Entscheidungsstrukturbewertungsmodells mit LightGBM.

public sealed class LightGbmRankingTrainer : Microsoft.ML.Trainers.LightGbm.LightGbmTrainerBase<Microsoft.ML.Trainers.LightGbm.LightGbmRankingTrainer.Options,float,Microsoft.ML.Data.RankingPredictionTransformer<Microsoft.ML.Trainers.LightGbm.LightGbmRankingModelParameters>,Microsoft.ML.Trainers.LightGbm.LightGbmRankingModelParameters>
type LightGbmRankingTrainer = class
    inherit LightGbmTrainerBase<LightGbmRankingTrainer.Options, single, RankingPredictionTransformer<LightGbmRankingModelParameters>, LightGbmRankingModelParameters>
Public NotInheritable Class LightGbmRankingTrainer
Inherits LightGbmTrainerBase(Of LightGbmRankingTrainer.Options, Single, RankingPredictionTransformer(Of LightGbmRankingModelParameters), LightGbmRankingModelParameters)
Vererbung

Hinweise

Um diesen Trainer zu erstellen, verwenden Sie LightGbm oder LightGbm(Options).

Eingabe- und Ausgabespalten

Der Datentyp für die Eingabebezeichnung muss ein Typ key oder Single sein. Der Wert der Bezeichnung bestimmt die Relevanz, wobei höhere Werte eine höhere Relevanz anzeigen. Wenn die Bezeichnung vom Typ key ist, dann ist der Schlüsselindex der Relevanzwert, wobei der kleinste Index der am wenigsten relevante ist. Wenn die Bezeichnung ein Single ist, zeigen höhere Werte eine höhere Relevanz an. Die Featurespalte muss ein bekannter Vektor und eine Spalte der Single Eingabezeilengruppe sein, muss schlüsseltyp sein.

Der Trainer gibt folgende Spalten aus:

Name der Ausgabespalte Spaltentyp BESCHREIBUNG
Score Single Die von dem Modell berechnete ungebundene Bewertung, um die Vorhersage zu bestimmen.

Trainereigenschaften

ML-Aufgabe Rangfolge
Ist die Normalisierung erforderlich? No
Ist zwischenspeichern erforderlich? No
Erforderliche NuGet zusätzlich zu Microsoft.ML Microsoft.ML.LightGbm
Exportierbar in ONNX No

Schulungsalgorithmusdetails

LightGBM ist eine Open Source Implementierung der Farbverlaufsbehebungsstruktur. Informationen zur Implementierung finden Sie in der offiziellen Dokumentation von LightGBM oder diesem Papier.

Überprüfen Sie den Abschnitt "Siehe auch", um Links zu Beispielen der Verwendung zu finden.

Felder

FeatureColumn

Die Featurespalte, die der Trainer erwartet.

(Geerbt von TrainerEstimatorBase<TTransformer,TModel>)
GroupIdColumn

Die optionale GroupID-Spalte, die die Bewertungstrainer erwarten.

(Geerbt von TrainerEstimatorBaseWithGroupId<TTransformer,TModel>)
LabelColumn

Die Bezeichnungsspalte, die der Trainer erwartet. Kann sein null, was angibt, dass die Bezeichnung nicht für Schulungen verwendet wird.

(Geerbt von TrainerEstimatorBase<TTransformer,TModel>)
WeightColumn

Die Gewichtsspalte, die der Trainer erwartet. nullKann sein, was angibt, dass das Gewicht nicht für die Schulung verwendet wird.

(Geerbt von TrainerEstimatorBase<TTransformer,TModel>)

Eigenschaften

Info

Für die IEstimator<TTransformer> Schulung eines verbesserten Entscheidungsstrukturbewertungsmodells mit LightGBM.

(Geerbt von LightGbmTrainerBase<TOptions,TOutput,TTransformer,TModel>)

Methoden

Fit(IDataView, IDataView)

Ruft eine LightGbmRankingTrainer Verwendung von Schulungs- und Validierungsdaten ab, gibt einen RankingPredictionTransformer<TModel>Wert zurück.

Fit(IDataView)

Züge und zurückgeben eine ITransformer.

(Geerbt von TrainerEstimatorBase<TTransformer,TModel>)
GetOutputSchema(SchemaShape)

Für die IEstimator<TTransformer> Schulung eines verbesserten Entscheidungsstrukturbewertungsmodells mit LightGBM.

(Geerbt von TrainerEstimatorBase<TTransformer,TModel>)

Erweiterungsmethoden

AppendCacheCheckpoint<TTrans>(IEstimator<TTrans>, IHostEnvironment)

Fügen Sie einen "Zwischenspeicherpunkt" an die Stimatorkette an. Dadurch wird sichergestellt, dass die nachgelagerten Stimatoren gegen zwischengespeicherte Daten trainiert werden. Es ist hilfreich, einen Cache-Prüfpunkt zu haben, bevor Trainer, die mehrere Daten übergeben.

WithOnFitDelegate<TTransformer>(IEstimator<TTransformer>, Action<TTransformer>)

Geben Sie aufgrund einer Schätzung ein Umbruchobjekt zurück, das einen Stellvertretung aufruft, sobald Fit(IDataView) er aufgerufen wird. Es ist oft wichtig, dass eine Schätzung Informationen zu dem zurückgibt, was passt, weshalb die Fit(IDataView) Methode ein spezifisches typiertes Objekt zurückgibt, anstatt nur ein allgemeines ITransformer. Gleichzeitig IEstimator<TTransformer> werden jedoch oft Pipelines mit vielen Objekten gebildet, sodass wir möglicherweise eine Kette von EstimatorChain<TLastTransformer> Schätzern erstellen müssen, über die der Schätzer, für den wir den Transformator erhalten möchten, irgendwo in dieser Kette begraben wird. Für dieses Szenario können wir über diese Methode eine Stellvertretung anfügen, die einmal aufgerufen wird, wenn die Anpassung aufgerufen wird.

Gilt für:

Weitere Informationen