Unable to deploy the trained model using Azure SDK v2

Rishavraj Mandal 30 Reputation points
2023-05-23T11:32:20.6266667+00:00

And lastly deployment logs shows this:

Instance status:
SystemSetup: Succeeded
UserContainerImagePull: Succeeded
ModelDownload: Succeeded
UserContainerStart: InProgress

Container events:
Kind: Pod, Name: Pulling, Type: Normal, Time: 2023-05-23T01:17:31.726303Z, Message: Start pulling container image
Kind: Pod, Name: Downloading, Type: Normal, Time: 2023-05-23T01:17:32.697829Z, Message: Start downloading models
Kind: Pod, Name: Pulled, Type: Normal, Time: 2023-05-23T01:20:06.535632Z, Message: Container image is pulled successfully
Kind: Pod, Name: Downloaded, Type: Normal, Time: 2023-05-23T01:20:06.535632Z, Message: Models are downloaded successfully
Kind: Pod, Name: Created, Type: Normal, Time: 2023-05-23T01:20:06.691742Z, Message: Created container inference-server
Kind: Pod, Name: Started, Type: Normal, Time: 2023-05-23T01:20:06.755508Z, Message: Started container inference-server

Container logs:
2023-05-23T01:20:06,767937802+00:00 - rsyslog/run 
2023-05-23T01:20:06,772188056+00:00 - gunicorn/run 
2023-05-23T01:20:06,773563973+00:00 - nginx/run 
2023-05-23T01:20:06,774047779+00:00 | gunicorn/run | 
2023-05-23T01:20:06,775608299+00:00 | gunicorn/run | ###############################################
2023-05-23T01:20:06,777286120+00:00 | gunicorn/run | AzureML Container Runtime Information
2023-05-23T01:20:06,779026742+00:00 | gunicorn/run | ###############################################
2023-05-23T01:20:06,780637662+00:00 | gunicorn/run | 
2023-05-23T01:20:06,782440485+00:00 | gunicorn/run | 
2023-05-23T01:20:06,786468236+00:00 | gunicorn/run | AzureML image information: openmpi4.1.0-ubuntu20.04, Materializaton Build:20230509.v1
2023-05-23T01:20:06,788041356+00:00 | gunicorn/run | 
2023-05-23T01:20:06,789705877+00:00 | gunicorn/run | 
2023-05-23T01:20:06,791375398+00:00 | gunicorn/run | PATH environment variable: /azureml-envs/azureml_d587e0800be72e17d773ddca63762cd1/bin:/opt/miniconda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
2023-05-23T01:20:06,793025919+00:00 | gunicorn/run | PYTHONPATH environment variable: 
2023-05-23T01:20:06,794927543+00:00 | gunicorn/run | 
2023-05-23T01:20:07,287148945+00:00 | gunicorn/run | CONDAPATH environment variable: /opt/miniconda

# conda environments:
#
                      *  /azureml-envs/azureml_d587e0800be72e17d773ddca63762cd1
base                     /opt/miniconda

2023-05-23T01:20:08,175873674+00:00 | gunicorn/run | 
2023-05-23T01:20:08,177405680+00:00 | gunicorn/run | Pip Dependencies (before dynamic installation)

adal==1.2.7
aiohttp==3.8.4
aiosignal==1.3.1
alembic==1.11.1
argcomplete==2.1.2
async-timeout==4.0.2
attrs==23.1.0
azure-common==1.1.28
azure-core==1.22.1
azure-graphrbac==0.61.1
azure-identity==1.13.0
azure-mgmt-authorization==2.0.0
azure-mgmt-containerregistry==9.1.0
azure-mgmt-core==1.3.0
azure-mgmt-keyvault==9.3.0
azure-mgmt-resource==21.0.0
azure-mgmt-storage==20.0.0
azureml-core==1.42.0.post1
azureml-inference-server-http==0.8.0
azureml-mlflow==1.42.0
backports.tempfile==1.0
backports.weakref==1.0.post1
bcrypt==4.0.1
boto3==1.26.138
botocore==1.29.138
cachetools==5.3.0
certifi==2023.5.7
cffi @ file:///home/conda/feedstock_root/build_artifacts/cffi_1671179356964/work
charset-normalizer==3.1.0
click==8.1.3
cloudpickle==2.2.1
cmake==3.26.3
contextlib2==21.6.0
cryptography==36.0.2
databricks-cli==0.17.7
docker==5.0.3
entrypoints==0.4
filelock==3.12.0
Flask==2.2.5
Flask-Cors==3.0.10
frozenlist==1.3.3
fsspec==2023.5.0
future @ file:///home/conda/feedstock_root/build_artifacts/future_1673596611778/work
gitdb==4.0.10
GitPython==3.1.31
google-api-core==2.11.0
google-auth==2.18.1
googleapis-common-protos==1.59.0
greenlet==2.0.2
gunicorn==20.1.0
humanfriendly==10.0
idna==3.4
importlib-metadata==6.6.0
importlib-resources==5.12.0
inference-schema==1.5
isodate==0.6.1
itsdangerous==2.1.2
jeepney==0.8.0
Jinja2==3.1.2
jmespath==1.0.0
joblib @ file:///home/conda/feedstock_root/build_artifacts/joblib_1663332044897/work
jsonpickle==2.2.0
knack==0.9.0
lightning-utilities==0.8.0
lit==16.0.5
Mako==1.2.4
MarkupSafe==2.1.2
mlflow==1.26.1
mlflow-skinny==2.3.2
mpmath==1.3.0
msal==1.22.0
msal-extensions==1.0.0
msrest==0.6.21
msrestazure==0.6.4
multidict==6.0.4
ndg-httpsclient==0.5.1
networkx==3.1
numpy @ file:///home/conda/feedstock_root/build_artifacts/numpy_1629092056723/work
nvidia-cublas-cu11==11.10.3.66
nvidia-cuda-cupti-cu11==11.7.101
nvidia-cuda-nvrtc-cu11==11.7.99
nvidia-cuda-runtime-cu11==11.7.99
nvidia-cudnn-cu11==8.5.0.96
nvidia-cufft-cu11==10.9.0.58
nvidia-curand-cu11==10.2.10.91
nvidia-cusolver-cu11==11.4.0.1
nvidia-cusparse-cu11==11.7.4.91
nvidia-nccl-cu11==2.14.3
nvidia-nvtx-cu11==11.7.91
oauthlib==3.2.2
opencensus==0.11.2
opencensus-context==0.1.3
opencensus-ext-azure==1.1.9
packaging==21.3
pandas==1.1.5
paramiko==2.12.0
pathspec==0.11.1
pkginfo==1.9.6
portalocker==2.7.0
prometheus-client==0.16.0
prometheus-flask-exporter==0.22.4
protobuf==4.23.1
psutil==5.9.5
pyasn1==0.5.0
pyasn1-modules==0.3.0
pycparser @ file:///home/conda/feedstock_root/build_artifacts/pycparser_1636257122734/work
pydantic==1.10.7
Pygments==2.15.1
PyJWT==2.7.0
PyNaCl==1.5.0
pyOpenSSL==22.0.0
pyparsing==3.0.9
PySocks==1.7.1
python-dateutil @ file:///home/conda/feedstock_root/build_artifacts/python-dateutil_1626286286081/work
pytorch-lightning==2.0.2
pytorch-transformers==1.2.0
pytz @ file:///home/conda/feedstock_root/build_artifacts/pytz_1680088766131/work
PyYAML==6.0
querystring-parser==1.2.4
regex==2023.5.5
requests==2.31.0
requests-oauthlib==1.3.1
rsa==4.9
s3transfer==0.6.1
sacremoses==0.0.53
scikit-learn @ file:///home/conda/feedstock_root/build_artifacts/scikit-learn_1630910537183/work
scipy @ file:///home/conda/feedstock_root/build_artifacts/scipy_1628206382406/work
SecretStorage==3.3.3
sentencepiece==0.1.99
seqeval==1.2.2
six @ file:///home/conda/feedstock_root/build_artifacts/six_1620240208055/work
smmap==5.0.0
SQLAlchemy==2.0.15
sqlparse==0.4.4
sympy==1.12
tabulate==0.9.0
threadpoolctl @ file:///home/conda/feedstock_root/build_artifacts/threadpoolctl_1643647933166/work
torch==2.0.1
torchmetrics==0.11.4
tqdm==4.63.0
triton==2.0.0
typing_extensions @ file:///home/conda/feedstock_root/build_artifacts/typing_extensions_1678559861143/work
urllib3==1.26.9
websocket-client==1.5.2
Werkzeug==2.3.4
wrapt==1.12.1
xlrd==2.0.1
yarl==1.9.2
zipp==3.15.0

2023-05-23T01:20:08,836735094+00:00 | gunicorn/run | 
2023-05-23T01:20:08,838657201+00:00 | gunicorn/run | ###############################################
2023-05-23T01:20:08,840420508+00:00 | gunicorn/run | Checking if the Python package azureml-inference-server-http is installed
2023-05-23T01:20:08,842133215+00:00 | gunicorn/run | ###############################################
2023-05-23T01:20:08,843869922+00:00 | gunicorn/run | 
2023-05-23T01:20:09,830826034+00:00 | gunicorn/run | 
2023-05-23T01:20:09,832438140+00:00 | gunicorn/run | ###############################################
2023-05-23T01:20:09,833918246+00:00 | gunicorn/run | AzureML Inference Server
2023-05-23T01:20:09,835327752+00:00 | gunicorn/run | ###############################################
2023-05-23T01:20:09,836711457+00:00 | gunicorn/run | 
2023-05-23T01:20:10,875997877+00:00 | gunicorn/run | Starting AzureML Inference Server HTTP.
2023-05-23 01:20:11,049 I [10] azmlinfsrv - Loaded logging config from /azureml-envs/azureml_d587e0800be72e17d773ddca63762cd1/lib/python3.8/site-packages/azureml_inference_server_http/logging.json
2023-05-23 01:20:11,143 I [10] gunicorn.error - Starting gunicorn 20.1.0
2023-05-23 01:20:11,144 I [10] gunicorn.error - Listening at: http://0.0.0.0:31311 (10)
2023-05-23 01:20:11,144 I [10] gunicorn.error - Using worker: sync
2023-05-23 01:20:11,146 I [70] gunicorn.error - Booting worker with pid: 70

Azure ML Inferencing HTTP server v0.8.0


Server Settings
---------------
Entry Script Name: /var/azureml-app/dependencies/score.py
Model Directory: /var/azureml-app/azureml-models/use-case1-model/3
Worker Count: 1
Worker Timeout (seconds): 300
Server Port: 31311
Application Insights Enabled: false
Application Insights Key: None
Inferencing HTTP server version: azmlinfsrv/0.8.0
CORS for the specified origins: None


Server Routes
---------------
Liveness Probe: GET   127.0.0.1:31311/
Score:          POST  127.0.0.1:31311/score

Initializing logger
2023-05-23 01:20:11,423 I [70] azmlinfsrv - Starting up app insights client
2023-05-23 01:20:12,970 E [70] azmlinfsrv - Traceback (most recent call last):
  File "/azureml-envs/azureml_d587e0800be72e17d773ddca63762cd1/lib/python3.8/site-packages/azureml_inference_server_http/server/user_script.py", line 74, in load_script
    main_module_spec.loader.exec_module(user_module)
  File "<frozen importlib._bootstrap_external>", line 843, in exec_module
  File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
  File "/var/azureml-app/dependencies/score.py", line 10, in <module>
    from config import opt
  File "/azureml-envs/azureml_d587e0800be72e17d773ddca63762cd1/lib/python3.8/site-packages/azureml_inference_server_http/server/config.py", line 8, in <module>
    from ..constants import DEFAULT_APP_ROOT
ImportError: attempted relative import with no known parent package

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "/azureml-envs/azureml_d587e0800be72e17d773ddca63762cd1/lib/python3.8/site-packages/azureml_inference_server_http/server/aml_blueprint.py", line 88, in setup
    self.user_script.load_script(config.app_root)
  File "/azureml-envs/azureml_d587e0800be72e17d773ddca63762cd1/lib/python3.8/site-packages/azureml_inference_server_http/server/user_script.py", line 76, in load_script
    raise UserScriptImportException(ex) from ex
azureml_inference_server_http.server.user_script.UserScriptImportException: Failed to import user script because it raised an unhandled exception

2023-05-23 01:20:12,970 I [70] gunicorn.error - Worker exiting (pid: 70)
2023-05-23 01:20:13,162 I [10] gunicorn.error - Shutting down: Master
2023-05-23 01:20:13,163 I [10] gunicorn.error - Reason: Worker failed to boot.

Azure ML Inferencing HTTP server v0.8.0


Server Settings
---------------
Entry Script Name: /var/azureml-app/dependencies/score.py
Model Directory: /var/azureml-app/azureml-models/use-case1-model/3
Worker Count: 1
Worker Timeout (seconds): 300
Server Port: 31311
Application Insights Enabled: false
Application Insights Key: None
Inferencing HTTP server version: azmlinfsrv/0.8.0
CORS for the specified origins: None


Server Routes
---------------
Liveness Probe: GET   127.0.0.1:31311/
Score:          POST  127.0.0.1:31311/score

2023-05-23T01:20:13,206072314+00:00 - gunicorn/finish 3 0
2023-05-23T01:20:13,207564233+00:00 - Exit code 3 is not normal. Killing image.

Azure Machine Learning
Azure Machine Learning
An Azure machine learning service for building and deploying models.
3,061 questions
Azure Virtual Machines
Azure Virtual Machines
An Azure service that is used to provision Windows and Linux virtual machines.
8,206 questions
Azure Data Science Virtual Machines
Azure Data Science Virtual Machines
Azure Virtual Machine images that are pre-installed, configured, and tested with several commonly used tools for data analytics, machine learning, and artificial intelligence training.
69 questions
0 comments No comments
{count} votes

1 answer

Sort by: Most helpful
  1. Rishavraj Mandal 30 Reputation points
    2023-05-23T11:40:39.1666667+00:00

    My Environment file -

    channels:
      - conda-forge
    dependencies:
      - python=3.8
      - pip=22.1.2
      - numpy=1.21.2
      - scikit-learn=0.24.2
      - scipy=1.7.1
      - 'pandas>=1.1,<1.2'
      - pytorch=1.10.0
      - pip:
          - 'inference-schema[numpy-support]==1.5.0'
          - xlrd==2.0.1
          - mlflow== 1.26.1
          - azureml-mlflow==1.42.0
          - tqdm==4.63.0
          - pytorch-transformers==1.2.0
          - pytorch-lightning==2.0.2
          - seqeval==1.2.2
          - azureml-inference-server-http==0.8.0
    name: model-env
    

Your answer

Answers can be marked as Accepted Answers by the question author, which helps users to know the answer solved the author's problem.