ASP.NET Core Blazor with Entity Framework Core (EF Core)

Note

This isn't the latest version of this article. For the current release, see the .NET 9 version of this article.

Warning

This version of ASP.NET Core is no longer supported. For more information, see the .NET and .NET Core Support Policy. For the current release, see the .NET 9 version of this article.

Important

This information relates to a pre-release product that may be substantially modified before it's commercially released. Microsoft makes no warranties, express or implied, with respect to the information provided here.

For the current release, see the .NET 9 version of this article.

This article explains how to use Entity Framework Core (EF Core) in server-side Blazor apps.

Server-side Blazor is a stateful app framework. The app maintains an ongoing connection to the server, and the user's state is held in the server's memory in a circuit. One example of user state is data held in dependency injection (DI) service instances that are scoped to the circuit. The unique application model that Blazor provides requires a special approach to use Entity Framework Core.

Note

This article addresses EF Core in server-side Blazor apps. Blazor WebAssembly apps run in a WebAssembly sandbox that prevents most direct database connections. Running EF Core in Blazor WebAssembly is beyond the scope of this article.

This guidance applies to components that adopt interactive server-side rendering (interactive SSR) in a Blazor Web App.

This guidance applies to the Server project of a hosted Blazor WebAssembly solution or a Blazor Server app.

Secure authentication flow required for production apps

This article pertains to the use of a local database that doesn't require user authentication. Production apps should use the most secure authentication flow available. For more information on authentication for deployed test and production Blazor apps, see the articles in the Blazor Security and Identity node.

For Microsoft Azure services, we recommend using managed identities. Managed identities securely authenticate to Azure services without storing credentials in app code. For more information, see the following resources:

Build a Blazor movie database app tutorial

For a tutorial experience building an app that uses EF Core for database operations, see Build a Blazor movie database app (Overview). The tutorial shows you how to create a Blazor Web App that can display and manage movies in a movie database.

Database access

EF Core relies on a DbContext as the means to configure database access and act as a unit of work. EF Core provides the AddDbContext extension for ASP.NET Core apps that registers the context as a scoped service. In server-side Blazor apps, scoped service registrations can be problematic because the instance is shared across components within the user's circuit. DbContext isn't thread safe and isn't designed for concurrent use. The existing lifetimes are inappropriate for these reasons:

  • Singleton shares state across all users of the app and leads to inappropriate concurrent use.
  • Scoped (the default) poses a similar issue between components for the same user.
  • Transient results in a new instance per request; but as components can be long-lived, this results in a longer-lived context than may be intended.

The following recommendations are designed to provide a consistent approach to using EF Core in server-side Blazor apps.

  • Consider using one context per operation. The context is designed for fast, low overhead instantiation:

    using var context = new ProductsDatabaseContext();
    
    return await context.Products.ToListAsync();
    
  • Use a flag to prevent multiple concurrent operations:

    if (Loading)
    {
        return;
    }
    
    try
    {
        Loading = true;
    
        ...
    }
    finally
    {
        Loading = false;
    }
    

    Place database operations after the Loading = true; line in the try block.

    Thread safety isn't a concern, so loading logic doesn't require locking database records. The loading logic is used to disable UI controls so that users don't inadvertently select buttons or update fields while data is fetched.

  • If there's any chance that multiple threads may access the same code block, inject a factory and make a new instance per operation. Otherwise, injecting and using the context is usually sufficient.

  • For longer-lived operations that take advantage of EF Core's change tracking or concurrency control, scope the context to the lifetime of the component.

New DbContext instances

The fastest way to create a new DbContext instance is by using new to create a new instance. However, there are scenarios that require resolving additional dependencies:

Warning

Don't store app secrets, connection strings, credentials, passwords, personal identification numbers (PINs), private C#/.NET code, or private keys/tokens in client-side code, which is always insecure. In test/staging and production environments, server-side Blazor code and web APIs should use secure authentication flows that avoid maintaining credentials within project code or configuration files. Outside of local development testing, we recommend avoiding the use of environment variables to store sensitive data, as environment variables aren't the most secure approach. For local development testing, the Secret Manager tool is recommended for securing sensitive data. For more information, see Securely maintain sensitive data and credentials.

The recommended approach to create a new DbContext with dependencies is to use a factory. EF Core 5.0 or later provides a built-in factory for creating new contexts.

In versions of .NET prior to 5.0, use the following DbContextFactory:

using System;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.DependencyInjection;

namespace BlazorServerDbContextExample.Data
{
    public class DbContextFactory<TContext> 
        : IDbContextFactory<TContext> where TContext : DbContext
    {
        private readonly IServiceProvider provider;

        public DbContextFactory(IServiceProvider provider)
        {
            this.provider = provider ?? throw new ArgumentNullException(
                $"{nameof(provider)}: You must configure an instance of " +
                "IServiceProvider");
        }

        public TContext CreateDbContext() => 
            ActivatorUtilities.CreateInstance<TContext>(provider);
    }
}

In the preceding factory:

The following example configures SQLite and enables data logging in an app that manages contacts. The code uses an extension method (AddDbContextFactory) to configure the database factory for DI and provide default options:

builder.Services.AddDbContextFactory<ContactContext>(opt =>
    opt.UseSqlite($"Data Source={nameof(ContactContext.ContactsDb)}.db"));
services.AddDbContextFactory<ContactContext>(opt =>
    opt.UseSqlite($"Data Source={nameof(ContactContext.ContactsDb)}.db"));

The factory is injected into components to create new DbContext instances.

Scope a database context to a component method

The factory is injected into the component:

@inject IDbContextFactory<ContactContext> DbFactory

Create a DbContext for a method using the factory (DbFactory):

private async Task DeleteContactAsync()
{
    using var context = DbFactory.CreateDbContext();

    if (context.Contacts is not null)
    {
        var contact = await context.Contacts.FirstAsync(...);

        if (contact is not null)
        {
            context.Contacts?.Remove(contact);
            await context.SaveChangesAsync();
        }
    }
}

Scope a database context to the lifetime of the component

You may wish to create a DbContext that exists for the lifetime of a component. This allows you to use it as a unit of work and take advantage of built-in features, such as change tracking and concurrency resolution.

Implement IDisposable and inject the factory into the component:

@implements IDisposable
@inject IDbContextFactory<ContactContext> DbFactory

Establish a property for the DbContext:

private ContactContext? Context { get; set; }

OnInitializedAsync is overridden to create the DbContext:

protected override async Task OnInitializedAsync()
{
    Context = DbFactory.CreateDbContext();
}

The DbContext is disposed when the component is disposed:

public void Dispose() => Context?.Dispose();

Enable sensitive data logging

EnableSensitiveDataLogging includes application data in exception messages and framework logging. The logged data can include the values assigned to properties of entity instances and parameter values for commands sent to the database. Logging data with EnableSensitiveDataLogging is a security risk, as it may expose passwords and other Personally Identifiable Information (PII) when it logs SQL statements executed against the database.

We recommend only enabling EnableSensitiveDataLogging for development and testing:

#if DEBUG
    services.AddDbContextFactory<ContactContext>(opt =>
        opt.UseSqlite($"Data Source={nameof(ContactContext.ContactsDb)}.db")
        .EnableSensitiveDataLogging());
#else
    services.AddDbContextFactory<ContactContext>(opt =>
        opt.UseSqlite($"Data Source={nameof(ContactContext.ContactsDb)}.db"));
#endif

Additional resources