ScriptIntrinsicBLAS.CHPR2 Method
Definition
Important
Some information relates to prerelease product that may be substantially modified before it’s released. Microsoft makes no warranties, express or implied, with respect to the information provided here.
CHPR2 performs the symmetric rank 2 operation A := alphaxyH + alphayxH + A
[Android.Runtime.Register("CHPR2", "(ILandroid/renderscript/Float2;Landroid/renderscript/Allocation;ILandroid/renderscript/Allocation;ILandroid/renderscript/Allocation;)V", "", ApiSince=23)]
public void CHPR2 (int Uplo, Android.Renderscripts.Float2? alpha, Android.Renderscripts.Allocation? X, int incX, Android.Renderscripts.Allocation? Y, int incY, Android.Renderscripts.Allocation? Ap);
[<Android.Runtime.Register("CHPR2", "(ILandroid/renderscript/Float2;Landroid/renderscript/Allocation;ILandroid/renderscript/Allocation;ILandroid/renderscript/Allocation;)V", "", ApiSince=23)>]
member this.CHPR2 : int * Android.Renderscripts.Float2 * Android.Renderscripts.Allocation * int * Android.Renderscripts.Allocation * int * Android.Renderscripts.Allocation -> unit
Parameters
- Uplo
- Int32
Specifies whether the upper or lower triangular part is to be supplied in the packed form.
- alpha
- Float2
The scalar alpha.
The input allocation contains vector x, supported elements type Element#F32_2
.
- incX
- Int32
The increment for the elements of vector x, must be larger than zero.
The input allocation contains vector y, supported elements type Element#F32_2
.
- incY
- Int32
The increment for the elements of vector y, must be larger than zero.
- Ap
- Allocation
The input allocation contains matrix A, supported elements type Element#F32_2
.
- Attributes
Remarks
CHPR2 performs the symmetric rank 2 operation A := alpha*x*y**H + alpha*y*x**H + A
Details: http://www.netlib.org/lapack/explore-html/d6/d44/chpr2_8f.html
Note: For a N*N matrix, the input Allocation should be a 1D allocation of size dimX = N*(N+1)/2, The following subroutine can is an example showing how to convert a UPPER trianglar matrix 'a' to packed matrix 'b'. k = 0 for i in range(0, n): for j in range(i, n): b[k++] = a[i, j]
Portions of this page are modifications based on work created and shared by the Android Open Source Project and used according to terms described in the Creative Commons 2.5 Attribution License.