Share via


IImageModelDistributionSettingsObjectDetection Interface

Definition

[System.ComponentModel.TypeConverter(typeof(Microsoft.Azure.PowerShell.Cmdlets.MachineLearningServices.Models.Api20240401.ImageModelDistributionSettingsObjectDetectionTypeConverter))]
public interface IImageModelDistributionSettingsObjectDetection : Microsoft.Azure.PowerShell.Cmdlets.MachineLearningServices.Models.Api20240401.IImageModelDistributionSettings
[<System.ComponentModel.TypeConverter(typeof(Microsoft.Azure.PowerShell.Cmdlets.MachineLearningServices.Models.Api20240401.ImageModelDistributionSettingsObjectDetectionTypeConverter))>]
type IImageModelDistributionSettingsObjectDetection = interface
    interface IJsonSerializable
    interface IImageModelDistributionSettings
Public Interface IImageModelDistributionSettingsObjectDetection
Implements IImageModelDistributionSettings
Derived
Attributes
Implements

Examples

Some examples are:

ModelName = "choice('seresnext', 'resnest50')";
LearningRate = "uniform(0.001, 0.01)";
LayersToFreeze = "choice(0, 2)";

Properties

AmsGradient

Enable AMSGrad when optimizer is 'adam' or 'adamw'.

(Inherited from IImageModelDistributionSettings)
Augmentation

Settings for using Augmentations.

(Inherited from IImageModelDistributionSettings)
Beta1

Value of 'beta1' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1].

(Inherited from IImageModelDistributionSettings)
Beta2

Value of 'beta2' when optimizer is 'adam' or 'adamw'. Must be a float in the range [0, 1].

(Inherited from IImageModelDistributionSettings)
BoxDetectionsPerImage

Maximum number of detections per image, for all classes. Must be a positive integer. Note: This settings is not supported for the 'yolov5' algorithm.

BoxScoreThreshold

During inference, only return proposals with a classification score greater than BoxScoreThreshold. Must be a float in the range[0, 1].

Distributed

Whether to use distributer training.

(Inherited from IImageModelDistributionSettings)
EarlyStopping

Enable early stopping logic during training.

(Inherited from IImageModelDistributionSettings)
EarlyStoppingDelay

Minimum number of epochs or validation evaluations to wait before primary metric improvement is tracked for early stopping. Must be a positive integer.

(Inherited from IImageModelDistributionSettings)
EarlyStoppingPatience

Minimum number of epochs or validation evaluations with no primary metric improvement before the run is stopped. Must be a positive integer.

(Inherited from IImageModelDistributionSettings)
EnableOnnxNormalization

Enable normalization when exporting ONNX model.

(Inherited from IImageModelDistributionSettings)
EvaluationFrequency

Frequency to evaluate validation dataset to get metric scores. Must be a positive integer.

(Inherited from IImageModelDistributionSettings)
GradientAccumulationStep

Gradient accumulation means running a configured number of "GradAccumulationStep" steps without updating the model weights while accumulating the gradients of those steps, and then using the accumulated gradients to compute the weight updates. Must be a positive integer.

(Inherited from IImageModelDistributionSettings)
ImageSize

Image size for train and validation. Must be a positive integer. Note: The training run may get into CUDA OOM if the size is too big. Note: This settings is only supported for the 'yolov5' algorithm.

LayersToFreeze

Number of layers to freeze for the model. Must be a positive integer. For instance, passing 2 as value for 'seresnext' means freezing layer0 and layer1. For a full list of models supported and details on layer freeze, please see: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.

(Inherited from IImageModelDistributionSettings)
LearningRate

Initial learning rate. Must be a float in the range [0, 1].

(Inherited from IImageModelDistributionSettings)
LearningRateScheduler

Type of learning rate scheduler. Must be 'warmup_cosine' or 'step'.

(Inherited from IImageModelDistributionSettings)
MaxSize

Maximum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm.

MinSize

Minimum size of the image to be rescaled before feeding it to the backbone. Must be a positive integer. Note: training run may get into CUDA OOM if the size is too big. Note: This settings is not supported for the 'yolov5' algorithm.

ModelName

Name of the model to use for training. For more information on the available models please visit the official documentation: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models.

(Inherited from IImageModelDistributionSettings)
ModelSize

Model size. Must be 'small', 'medium', 'large', or 'xlarge'. Note: training run may get into CUDA OOM if the model size is too big. Note: This settings is only supported for the 'yolov5' algorithm.

Momentum

Value of momentum when optimizer is 'sgd'. Must be a float in the range [0, 1].

(Inherited from IImageModelDistributionSettings)
MultiScale

Enable multi-scale image by varying image size by +/- 50%. Note: training run may get into CUDA OOM if no sufficient GPU memory. Note: This settings is only supported for the 'yolov5' algorithm.

Nesterov

Enable nesterov when optimizer is 'sgd'.

(Inherited from IImageModelDistributionSettings)
NmsIouThreshold

IOU threshold used during inference in NMS post processing. Must be float in the range [0, 1].

NumberOfEpoch

Number of training epochs. Must be a positive integer.

(Inherited from IImageModelDistributionSettings)
NumberOfWorker

Number of data loader workers. Must be a non-negative integer.

(Inherited from IImageModelDistributionSettings)
Optimizer

Type of optimizer. Must be either 'sgd', 'adam', or 'adamw'.

(Inherited from IImageModelDistributionSettings)
RandomSeed

Random seed to be used when using deterministic training.

(Inherited from IImageModelDistributionSettings)
StepLrGamma

Value of gamma when learning rate scheduler is 'step'. Must be a float in the range [0, 1].

(Inherited from IImageModelDistributionSettings)
StepLrStepSize

Value of step size when learning rate scheduler is 'step'. Must be a positive integer.

(Inherited from IImageModelDistributionSettings)
TileGridSize

The grid size to use for tiling each image. Note: TileGridSize must not be None to enable small object detection logic. A string containing two integers in mxn format. Note: This settings is not supported for the 'yolov5' algorithm.

TileOverlapRatio

Overlap ratio between adjacent tiles in each dimension. Must be float in the range [0, 1). Note: This settings is not supported for the 'yolov5' algorithm.

TilePredictionsNmsThreshold

The IOU threshold to use to perform NMS while merging predictions from tiles and image. Used in validation/ inference. Must be float in the range [0, 1]. Note: This settings is not supported for the 'yolov5' algorithm. NMS: Non-maximum suppression

TrainingBatchSize

Training batch size. Must be a positive integer.

(Inherited from IImageModelDistributionSettings)
ValidationBatchSize

Validation batch size. Must be a positive integer.

(Inherited from IImageModelDistributionSettings)
ValidationIouThreshold

IOU threshold to use when computing validation metric. Must be float in the range [0, 1].

ValidationMetricType

Metric computation method to use for validation metrics. Must be 'none', 'coco', 'voc', or 'coco_voc'.

WarmupCosineLrCycle

Value of cosine cycle when learning rate scheduler is 'warmup_cosine'. Must be a float in the range [0, 1].

(Inherited from IImageModelDistributionSettings)
WarmupCosineLrWarmupEpoch

Value of warmup epochs when learning rate scheduler is 'warmup_cosine'. Must be a positive integer.

(Inherited from IImageModelDistributionSettings)
WeightDecay

Value of weight decay when optimizer is 'sgd', 'adam', or 'adamw'. Must be a float in the range[0, 1].

(Inherited from IImageModelDistributionSettings)

Methods

ToJson(JsonObject, SerializationMode) (Inherited from IJsonSerializable)

Applies to