AnomalyDetector class

Extends

Constructors

AnomalyDetector(string, AnomalyDetectorOptionalParams)

Initializes a new instance of the AnomalyDetector class.

Inherited Properties

apiVersion
endpoint

Methods

deleteMultivariateModel(string, AnomalyDetectorDeleteMultivariateModelOptionalParams)

Delete an existing multivariate model according to the modelId

detectAnomaly(string, DetectionRequest, AnomalyDetectorDetectAnomalyOptionalParams)

Submit detection multivariate anomaly task with the trained model of modelId, the input schema should be the same with the training request. Thus request will be complete asynchronously and will return a resultId for querying the detection result.The request should be a source link to indicate an externally accessible Azure storage Uri (preferably a Shared Access Signature Uri). All time-series used in generate the model must be zipped into one single file. Each time-series will be as follows: the first column is timestamp and the second column is value.

detectChangePoint(DetectChangePointRequest, AnomalyDetectorDetectChangePointOptionalParams)

Evaluate change point score of every series point

detectEntireSeries(DetectRequest, AnomalyDetectorDetectEntireSeriesOptionalParams)

This operation generates a model with an entire series, each point is detected with the same model. With this method, points before and after a certain point are used to determine whether it is an anomaly. The entire detection can give user an overall status of the time series.

detectLastPoint(DetectRequest, AnomalyDetectorDetectLastPointOptionalParams)

This operation generates a model using points before the latest one. With this method, only historical points are used to determine whether the target point is an anomaly. The latest point detecting operation matches the scenario of real-time monitoring of business metrics.

exportModel(string, AnomalyDetectorExportModelOptionalParams)

Export multivariate anomaly detection model based on modelId

getDetectionResult(string, AnomalyDetectorGetDetectionResultOptionalParams)

Get multivariate anomaly detection result based on resultId returned by the DetectAnomalyAsync api

getMultivariateModel(string, AnomalyDetectorGetMultivariateModelOptionalParams)

Get detailed information of multivariate model, including the training status and variables used in the model.

lastDetectAnomaly(string, LastDetectionRequest, AnomalyDetectorLastDetectAnomalyOptionalParams)

Synchronized API for anomaly detection.

listMultivariateModel(AnomalyDetectorListMultivariateModelOptionalParams)

List models of a subscription

trainMultivariateModel(AnomalyDetectorClientModelInfo, AnomalyDetectorTrainMultivariateModelOptionalParams)

Create and train a multivariate anomaly detection model. The request must include a source parameter to indicate an externally accessible Azure storage Uri (preferably a Shared Access Signature Uri). All time-series used in generate the model must be zipped into one single file. Each time-series will be in a single CSV file in which the first column is timestamp and the second column is value.

Inherited Methods

sendOperationRequest(OperationArguments, OperationSpec, ServiceCallback<any>)

Send an HTTP request that is populated using the provided OperationSpec.

sendRequest(RequestPrepareOptions | WebResourceLike)

Send the provided httpRequest.

Constructor Details

AnomalyDetector(string, AnomalyDetectorOptionalParams)

Initializes a new instance of the AnomalyDetector class.

new AnomalyDetector(endpoint: string, options?: AnomalyDetectorOptionalParams)

Parameters

endpoint

string

Supported Cognitive Services endpoints (protocol and hostname, for example: https://westus2.api.cognitive.microsoft.com).

options
AnomalyDetectorOptionalParams

The parameter options

Inherited Property Details

apiVersion

apiVersion: string

Property Value

string

Inherited From AnomalyDetectorContext.apiVersion

endpoint

endpoint: string

Property Value

string

Inherited From AnomalyDetectorContext.endpoint

Method Details

deleteMultivariateModel(string, AnomalyDetectorDeleteMultivariateModelOptionalParams)

Delete an existing multivariate model according to the modelId

function deleteMultivariateModel(modelId: string, options?: AnomalyDetectorDeleteMultivariateModelOptionalParams): Promise<RestResponse>

Parameters

modelId

string

Model identifier.

Returns

Promise<RestResponse>

detectAnomaly(string, DetectionRequest, AnomalyDetectorDetectAnomalyOptionalParams)

Submit detection multivariate anomaly task with the trained model of modelId, the input schema should be the same with the training request. Thus request will be complete asynchronously and will return a resultId for querying the detection result.The request should be a source link to indicate an externally accessible Azure storage Uri (preferably a Shared Access Signature Uri). All time-series used in generate the model must be zipped into one single file. Each time-series will be as follows: the first column is timestamp and the second column is value.

function detectAnomaly(modelId: string, body: DetectionRequest, options?: AnomalyDetectorDetectAnomalyOptionalParams): Promise<AnomalyDetectorDetectAnomalyResponse>

Parameters

modelId

string

Model identifier.

body
DetectionRequest

Detect anomaly request

options
AnomalyDetectorDetectAnomalyOptionalParams

The options parameters.

Returns

detectChangePoint(DetectChangePointRequest, AnomalyDetectorDetectChangePointOptionalParams)

Evaluate change point score of every series point

function detectChangePoint(body: DetectChangePointRequest, options?: AnomalyDetectorDetectChangePointOptionalParams): Promise<AnomalyDetectorDetectChangePointResponse>

Parameters

body
DetectChangePointRequest

Time series points and granularity is needed. Advanced model parameters can also be set in the request if needed.

options
AnomalyDetectorDetectChangePointOptionalParams

The options parameters.

Returns

detectEntireSeries(DetectRequest, AnomalyDetectorDetectEntireSeriesOptionalParams)

This operation generates a model with an entire series, each point is detected with the same model. With this method, points before and after a certain point are used to determine whether it is an anomaly. The entire detection can give user an overall status of the time series.

function detectEntireSeries(body: DetectRequest, options?: AnomalyDetectorDetectEntireSeriesOptionalParams): Promise<AnomalyDetectorDetectEntireSeriesResponse>

Parameters

body
DetectRequest

Time series points and period if needed. Advanced model parameters can also be set in the request.

options
AnomalyDetectorDetectEntireSeriesOptionalParams

The options parameters.

Returns

detectLastPoint(DetectRequest, AnomalyDetectorDetectLastPointOptionalParams)

This operation generates a model using points before the latest one. With this method, only historical points are used to determine whether the target point is an anomaly. The latest point detecting operation matches the scenario of real-time monitoring of business metrics.

function detectLastPoint(body: DetectRequest, options?: AnomalyDetectorDetectLastPointOptionalParams): Promise<AnomalyDetectorDetectLastPointResponse>

Parameters

body
DetectRequest

Time series points and period if needed. Advanced model parameters can also be set in the request.

options
AnomalyDetectorDetectLastPointOptionalParams

The options parameters.

Returns

exportModel(string, AnomalyDetectorExportModelOptionalParams)

Export multivariate anomaly detection model based on modelId

function exportModel(modelId: string, options?: AnomalyDetectorExportModelOptionalParams): Promise<AnomalyDetectorExportModelResponse>

Parameters

modelId

string

Model identifier.

options
AnomalyDetectorExportModelOptionalParams

The options parameters.

Returns

getDetectionResult(string, AnomalyDetectorGetDetectionResultOptionalParams)

Get multivariate anomaly detection result based on resultId returned by the DetectAnomalyAsync api

function getDetectionResult(resultId: string, options?: AnomalyDetectorGetDetectionResultOptionalParams): Promise<AnomalyDetectorGetDetectionResultResponse>

Parameters

resultId

string

Result identifier.

options
AnomalyDetectorGetDetectionResultOptionalParams

The options parameters.

Returns

getMultivariateModel(string, AnomalyDetectorGetMultivariateModelOptionalParams)

Get detailed information of multivariate model, including the training status and variables used in the model.

function getMultivariateModel(modelId: string, options?: AnomalyDetectorGetMultivariateModelOptionalParams): Promise<AnomalyDetectorGetMultivariateModelResponse>

Parameters

modelId

string

Model identifier.

options
AnomalyDetectorGetMultivariateModelOptionalParams

The options parameters.

Returns

lastDetectAnomaly(string, LastDetectionRequest, AnomalyDetectorLastDetectAnomalyOptionalParams)

Synchronized API for anomaly detection.

function lastDetectAnomaly(modelId: string, body: LastDetectionRequest, options?: AnomalyDetectorLastDetectAnomalyOptionalParams): Promise<AnomalyDetectorLastDetectAnomalyResponse>

Parameters

modelId

string

Model identifier.

body
LastDetectionRequest

Request for last detection.

options
AnomalyDetectorLastDetectAnomalyOptionalParams

The options parameters.

Returns

listMultivariateModel(AnomalyDetectorListMultivariateModelOptionalParams)

List models of a subscription

function listMultivariateModel(options?: AnomalyDetectorListMultivariateModelOptionalParams): PagedAsyncIterableIterator<AnomalyDetectorClientModelSnapshot, AnomalyDetectorClientModelSnapshot[], PageSettings>

Parameters

options
AnomalyDetectorListMultivariateModelOptionalParams

The options parameters.

Returns

trainMultivariateModel(AnomalyDetectorClientModelInfo, AnomalyDetectorTrainMultivariateModelOptionalParams)

Create and train a multivariate anomaly detection model. The request must include a source parameter to indicate an externally accessible Azure storage Uri (preferably a Shared Access Signature Uri). All time-series used in generate the model must be zipped into one single file. Each time-series will be in a single CSV file in which the first column is timestamp and the second column is value.

function trainMultivariateModel(body: AnomalyDetectorClientModelInfo, options?: AnomalyDetectorTrainMultivariateModelOptionalParams): Promise<AnomalyDetectorTrainMultivariateModelResponse>

Parameters

body
AnomalyDetectorClientModelInfo

Training request

options
AnomalyDetectorTrainMultivariateModelOptionalParams

The options parameters.

Returns

Inherited Method Details

sendOperationRequest(OperationArguments, OperationSpec, ServiceCallback<any>)

Send an HTTP request that is populated using the provided OperationSpec.

function sendOperationRequest(operationArguments: OperationArguments, operationSpec: OperationSpec, callback?: ServiceCallback<any>): Promise<RestResponse>

Parameters

operationArguments
OperationArguments

The arguments that the HTTP request's templated values will be populated from.

operationSpec
OperationSpec

The OperationSpec to use to populate the httpRequest.

callback

ServiceCallback<any>

The callback to call when the response is received.

Returns

Promise<RestResponse>

Inherited From AnomalyDetectorContext.sendOperationRequest

sendRequest(RequestPrepareOptions | WebResourceLike)

Send the provided httpRequest.

function sendRequest(options: RequestPrepareOptions | WebResourceLike): Promise<HttpOperationResponse>

Parameters

Returns

Inherited From AnomalyDetectorContext.sendRequest