References to Pointers
The latest version of this topic can be found at References to Pointers.
References to pointers can be declared in much the same way as references to objects. Declaring a reference to a pointer yields a modifiable value that is used like a normal pointer.
Example
The following code samples illustrate the difference between using a pointer to a pointer and a reference to a pointer.
Functions Add1
and Add2
are functionally equivalent (although they are not called the same way). The difference is that Add1
uses double indirection whereas Add2
uses the convenience of a reference to a pointer.
// references_to_pointers.cpp
// compile with: /EHsc
#include <iostream>
#include <string>
// STL namespace
using namespace std;
enum {
sizeOfBuffer = 132
};
// Define a binary tree structure.
struct BTree {
char *szText;
BTree *Left;
BTree *Right;
};
// Define a pointer to the root of the tree.
BTree *btRoot = 0;
int Add1( BTree **Root, char *szToAdd );
int Add2( BTree*& Root, char *szToAdd );
void PrintTree( BTree* btRoot );
int main( int argc, char *argv[] ) {
// Usage message
if( argc < 2 ) {
cerr << "Usage: Refptr [1 | 2]" << "\n";
cerr << "\nwhere:\n";
cerr << "1 uses double indirection\n";
cerr << "2 uses a reference to a pointer.\n";
cerr << "\nInput is from stdin.\n";
return 1;
}
char *szBuf = new char[sizeOfBuffer];
if (szBuf == NULL) {
cerr << "Out of memory!\n";
return -1;
}
// Read a text file from the standard input device and
// build a binary tree.
//while( !cin.eof() )
{
cin.get( szBuf, sizeOfBuffer, '\n' );
cin.get();
if ( strlen( szBuf ) ) {
switch ( *argv[1] ) {
// Method 1: Use double indirection.
case '1':
Add1( &btRoot, szBuf );
break;
// Method 2: Use reference to a pointer.
case '2':
Add2( btRoot, szBuf );
break;
default:
cerr << "Illegal value '"
<< *argv[1]
<< "' supplied for add method.\n"
<< "Choose 1 or 2.\n";
return -1;
}
}
}
// Display the sorted list.
PrintTree( btRoot );
}
// PrintTree: Display the binary tree in order.
void PrintTree( BTree* MybtRoot ) {
// Traverse the left branch of the tree recursively.
if ( btRoot->Left )
PrintTree( btRoot->Left );
// Print the current node.
cout << btRoot->szText << "\n";
// Traverse the right branch of the tree recursively.
if ( btRoot->Right )
PrintTree( btRoot->Right );
}
// Add1: Add a node to the binary tree.
// Uses double indirection.
int Add1( BTree **Root, char *szToAdd ) {
if ( (*Root) == 0 ) {
(*Root) = new BTree;
(*Root)->Left = 0;
(*Root)->Right = 0;
(*Root)->szText = new char[strlen( szToAdd ) + 1];
strcpy_s((*Root)->szText, (strlen( szToAdd ) + 1), szToAdd );
return 1;
}
else {
if ( strcmp( (*Root)->szText, szToAdd ) > 0 )
return Add1( &((*Root)->Left), szToAdd );
else
return Add1( &((*Root)->Right), szToAdd );
}
}
// Add2: Add a node to the binary tree.
// Uses reference to pointer
int Add2( BTree*& Root, char *szToAdd ) {
if ( Root == 0 ) {
Root = new BTree;
Root->Left = 0;
Root->Right = 0;
Root->szText = new char[strlen( szToAdd ) + 1];
strcpy_s( Root->szText, (strlen( szToAdd ) + 1), szToAdd );
return 1;
}
else {
if ( strcmp( Root->szText, szToAdd ) > 0 )
return Add2( Root->Left, szToAdd );
else
return Add2( Root->Right, szToAdd );
}
}
Usage: Refptr [1 | 2]
where:
1 uses double indirection
2 uses a reference to a pointer.
Input is from stdin.