How to: Create Agents that Use Specific Scheduler Policies
The new home for Visual Studio documentation is Visual Studio 2017 Documentation on docs.microsoft.com.
An agent is an application component that works asynchronously with other components to solve larger computing tasks. An agent typically has a set life cycle and maintains state.
Every agent can have unique application requirements. For example, an agent that enables user interaction (either retrieving input or displaying output) might require higher priority access to computing resources. Scheduler policies let you control the strategy that the scheduler uses when it manages tasks. This topic demonstrates how to create agents that use specific scheduler policies.
For a basic example that uses custom scheduler policies together with asynchronous message blocks, see How to: Specify Specific Scheduler Policies.
This topic uses functionality from the Asynchronous Agents Library, such as agents, message blocks, and message-passing functions, to perform work. For more information about the Asynchronous Agents Library, see Asynchronous Agents Library.
Example
The following example defines two classes that derive from concurrency::agent: permutor
and printer
. The permutor
class computes all permutations of a given input string. The printer
class prints progress messages to the console. The permutor
class performs a computationally-intensive operation, which might use all available computing resources. To be useful, the printer
class must print each progress message in a timely manner.
To provide the printer
class fair access to computing resources, this example uses steps that are described in How to: Manage a Scheduler Instance to create a scheduler instance that has a custom policy. The custom policy specifies the thread priority to be the highest priority class.
To illustrate the benefits of using a scheduler that has a custom policy, this example performs the overall task two times. The example first uses the default scheduler to schedule both tasks. The example then uses the default scheduler to schedule the permutor
object, and a scheduler that has a custom policy to schedule the printer
object.
// permute-strings.cpp
// compile with: /EHsc
#include <windows.h>
#include <ppl.h>
#include <agents.h>
#include <iostream>
#include <sstream>
using namespace concurrency;
using namespace std;
// Computes all permutations of a given input string.
class permutor : public agent
{
public:
explicit permutor(ISource<wstring>& source,
ITarget<unsigned int>& progress)
: _source(source)
, _progress(progress)
{
}
explicit permutor(ISource<wstring>& source,
ITarget<unsigned int>& progress,
Scheduler& scheduler)
: agent(scheduler)
, _source(source)
, _progress(progress)
{
}
explicit permutor(ISource<wstring>& source,
ITarget<unsigned int>& progress,
ScheduleGroup& group)
: agent(group)
, _source(source)
, _progress(progress)
{
}
protected:
// Performs the work of the agent.
void run()
{
// Read the source string from the buffer.
wstring s = receive(_source);
// Compute all permutations.
permute(s);
// Set the status of the agent to agent_done.
done();
}
// Computes the factorial of the given value.
unsigned int factorial(unsigned int n)
{
if (n == 0)
return 0;
if (n == 1)
return 1;
return n * factorial(n - 1);
}
// Computes the nth permutation of the given wstring.
wstring permutation(int n, const wstring& s)
{
wstring t(s);
size_t len = t.length();
for (unsigned int i = 2; i < len; ++i)
{
swap(t[n % i], t[i]);
n = n / i;
}
return t;
}
// Computes all permutations of the given string.
void permute(const wstring& s)
{
// The factorial gives us the number of permutations.
unsigned int permutation_count = factorial(s.length());
// The number of computed permutations.
LONG count = 0L;
// Tracks the previous percentage so that we only send the percentage
// when it changes.
unsigned int previous_percent = 0u;
// Send initial progress message.
send(_progress, previous_percent);
// Compute all permutations in parallel.
parallel_for (0u, permutation_count, [&](unsigned int i) {
// Compute the permutation.
permutation(i, s);
// Send the updated status to the progress reader.
unsigned int percent = 100 * InterlockedIncrement(&count) / permutation_count;
if (percent > previous_percent)
{
send(_progress, percent);
previous_percent = percent;
}
});
// Send final progress message.
send(_progress, 100u);
}
private:
// The buffer that contains the source string to permute.
ISource<wstring>& _source;
// The buffer to write progress status to.
ITarget<unsigned int>& _progress;
};
// Prints progress messages to the console.
class printer : public agent
{
public:
explicit printer(ISource<wstring>& source,
ISource<unsigned int>& progress)
: _source(source)
, _progress(progress)
{
}
explicit printer(ISource<wstring>& source,
ISource<unsigned int>& progress, Scheduler& scheduler)
: agent(scheduler)
, _source(source)
, _progress(progress)
{
}
explicit printer(ISource<wstring>& source,
ISource<unsigned int>& progress, ScheduleGroup& group)
: agent(group)
, _source(source)
, _progress(progress)
{
}
protected:
// Performs the work of the agent.
void run()
{
// Read the source string from the buffer and print a message.
wstringstream ss;
ss << L"Computing all permutations of '" << receive(_source) << L"'..." << endl;
wcout << ss.str();
// Print each progress message.
unsigned int previous_progress = 0u;
while (true)
{
unsigned int progress = receive(_progress);
if (progress > previous_progress || progress == 0u)
{
wstringstream ss;
ss << L'\r' << progress << L"% complete...";
wcout << ss.str();
previous_progress = progress;
}
if (progress == 100)
break;
}
wcout << endl;
// Set the status of the agent to agent_done.
done();
}
private:
// The buffer that contains the source string to permute.
ISource<wstring>& _source;
// The buffer that contains progress status.
ISource<unsigned int>& _progress;
};
// Computes all permutations of the given string.
void permute_string(const wstring& source,
Scheduler& permutor_scheduler, Scheduler& printer_scheduler)
{
// Message buffer that contains the source string.
// The permutor and printer agents both read from this buffer.
single_assignment<wstring> source_string;
// Message buffer that contains the progress status.
// The permutor agent writes to this buffer and the printer agent reads
// from this buffer.
unbounded_buffer<unsigned int> progress;
// Create the agents with the appropriate schedulers.
permutor agent1(source_string, progress, permutor_scheduler);
printer agent2(source_string, progress, printer_scheduler);
// Start the agents.
agent1.start();
agent2.start();
// Write the source string to the message buffer. This will unblock the agents.
send(source_string, source);
// Wait for both agents to finish.
agent::wait(&agent1);
agent::wait(&agent2);
}
int wmain()
{
const wstring source(L"Grapefruit");
// Compute all permutations on the default scheduler.
Scheduler* default_scheduler = CurrentScheduler::Get();
wcout << L"With default scheduler: " << endl;
permute_string(source, *default_scheduler, *default_scheduler);
wcout << endl;
// Compute all permutations again. This time, provide a scheduler that
// has higher context priority to the printer agent.
SchedulerPolicy printer_policy(1, ContextPriority, THREAD_PRIORITY_HIGHEST);
Scheduler* printer_scheduler = Scheduler::Create(printer_policy);
// Register to be notified when the scheduler shuts down.
HANDLE hShutdownEvent = CreateEvent(NULL, FALSE, FALSE, NULL);
printer_scheduler->RegisterShutdownEvent(hShutdownEvent);
wcout << L"With higher context priority: " << endl;
permute_string(source, *default_scheduler, *printer_scheduler);
wcout << endl;
// Release the printer scheduler.
printer_scheduler->Release();
// Wait for the scheduler to shut down and destroy itself.
WaitForSingleObject(hShutdownEvent, INFINITE);
// Close the event handle.
CloseHandle(hShutdownEvent);
}
This example produces the following output.
With default scheduler:
Computing all permutations of 'Grapefruit'...
100% complete...
With higher context priority:
Computing all permutations of 'Grapefruit'...
100% complete...
Although both sets of tasks produce the same result, the version that uses a custom policy enables the printer
object to run at an elevated priority so that it behaves more responsively.
Compiling the Code
Copy the example code and paste it in a Visual Studio project, or paste it in a file that is named permute-strings.cpp
and then run the following command in a Visual Studio Command Prompt window.
cl.exe /EHsc permute-strings.cpp