Matrix.Transformation2D(Vector2,Single,Vector2,Vector2,Single,Vector2) Method (Microsoft.DirectX)
Builds a 2-D transformation matrix in the xy plane.
Definition
Visual Basic Public Shared Function Transformation2D( _
ByVal scalingCenter As Vector2, _
ByVal scalingRotation As Single, _
ByVal scaling As Vector2, _
ByVal rotationCenter As Vector2, _
ByVal rotation As Single, _
ByVal translation As Vector2 _
) As MatrixC# public static Matrix Transformation2D(
Vector2 scalingCenter,
float scalingRotation,
Vector2 scaling,
Vector2 rotationCenter,
float rotation,
Vector2 translation
);C++ public:
static Matrix Transformation2D(
Vector2 scalingCenter,
float scalingRotation,
Vector2 scaling,
Vector2 rotationCenter,
float rotation,
Vector2 translation
);JScript public static function Transformation2D(
scalingCenter : Vector2,
scalingRotation : float,
scaling : Vector2,
rotationCenter : Vector2,
rotation : float,
translation : Vector2
) : Matrix;
Parameters
scalingCenter Microsoft.DirectX.Vector2
A Vector2 structure that is a point identifying the scaling center.scalingRotation System.Single
Scaling rotation factor. Use a zero value to specify no rotation.scaling Microsoft.DirectX.Vector2
A Vector2 structure that is a point identifying the scale. Use Vector2.Empty to specify no scaling.rotationCenter Microsoft.DirectX.Vector2
A Vector2 structure that is a point identifying the rotation center.rotation System.Single
Angle of rotation, in radians.translation Microsoft.DirectX.Vector2
A Vector2 structure that identifies the translation. Use Vector2.Empty to specify no translation.
Return Value
Microsoft.DirectX.Matrix
A Matrix structure that contains the transformation matrix.
Remarks
The Transformation2D method calculates the affine transformation matrix using the following formula, with matrix concatenation evaluated in left-to-right order:
M out = (Msc)-1 * (Msr)-1 * Ms * Msr * Msc * (Mrc)-1 * Mr * Mrc * Mt
where:
- M out = output transformation matrix (the return value)
- M sc = scaling center matrix (scalingCenter)
- M sr = scaling rotation matrix (scalingRotation)
- M s = scaling matrix (scaling)
- M rc = center of rotation matrix (rotationCenter)
- M r = rotation matrix (rotation)
- M t = translation matrix (translation)
For 3-D transformations, use Transformation.