UnsafeNativeMethods.Vector4.CatmullRom(Vector4,Vector4,Vector4,Vector4,Vector4,Single) Method (Microsoft.DirectX)
Performs a Catmull-Rom interpolation using specified 4-D vectors.
Note: For programming in Microsoft Visual Basic .NET or Microsoft JScript .NET, use the equivalent method in the Microsoft.DirectX structures.
Definition
Visual Basic Public Shared Function CatmullRom( _
ByVal pOut As Vector4, _
ByVal pPosition1 As Vector4, _
ByVal pPosition2 As Vector4, _
ByVal pPosition3 As Vector4, _
ByVal pPosition4 As Vector4, _
ByVal weightingFactor As Single _
) As Vector4C# public static Vector4 CatmullRom(
Vector4 pOut,
Vector4 pPosition1,
Vector4 pPosition2,
Vector4 pPosition3,
Vector4 pPosition4,
float weightingFactor
);C++ public:
static Vector4 CatmullRom(
Vector4 pOut,
Vector4 pPosition1,
Vector4 pPosition2,
Vector4 pPosition3,
Vector4 pPosition4,
float weightingFactor
);JScript public static function CatmullRom(
pOut : Vector4,
pPosition1 : Vector4,
pPosition2 : Vector4,
pPosition3 : Vector4,
pPosition4 : Vector4,
weightingFactor : float
) : Vector4;
Parameters
pOut Microsoft.DirectX.Vector4
A Vector4 structure that is the result of the Catmull-Rom interpolation.pPosition1 Microsoft.DirectX.Vector4
Source Vector4 structure that is a position vector.pPosition2 Microsoft.DirectX.Vector4
Source Vector4 structure that is a position vector.pPosition3 Microsoft.DirectX.Vector4
Source Vector4 structure that is a position vector.pPosition4 Microsoft.DirectX.Vector4
Source Vector4 structure that is a position vector.weightingFactor System.Single
Weighting factor. See Remarks.
Return Value
Microsoft.DirectX.Vector4
A Vector4 structure that is the result of the Catmull-Rom interpolation.
Remarks
To derive the Catmull-Rom spline from the Hermite spline, use the following settings. In this example,
v1
is the contents of pPosition1,v2
is the contents of pPosition2,p3
is the contents of pPosition3,p4
is the contents of pPosition4, ands
is the contents of weightingFactor.v1 = p2 v2 = p3 t1 = (p3 - p1) / 2 t2 = (p4 - p2) / 2
Using the following Hermite spline equation:
Q(s) = (2s3 - 3s2 + 1)v1 + (-2s3 + 3s2)v2 + (s3 - 2s2 + s)t1 + (s3 - s2)t2
and substituting for
v1
,v2
,t1
,t2
yields the following result.Q(s) = (2s3 - 3s2 + 1)p2 + (-2s3 + 3s2)p3 + (s3 - 2s2 + s)(p3 - p1) / 2 + (s3 - s2)(p4 - p2)/2
This result can be rearranged as follows:
Q(s) = [(-s3 + 2s2 - s)p1 + (3s3 - 5s2 + 2)p2 + (-3s3 + 4s2 + s)p3 + (s3 - s2)p4] / 2
The return value for this method is the same value returned in the pOut parameter. This allows you to use the CatmullRom method as a parameter for another method.
See Also