<memory> functions
The latest version of this topic can be found at <memory> functions.
addressof | align | allocate_shared |
const_pointer_cast | declare_no_pointers | declare_reachable |
default_delete | dynamic_pointer_cast | get_deleter Function |
get_pointer_safety | get_temporary_buffer | make_shared |
make_unique | owner_less | return_temporary_buffer |
static_pointer_cast | swap (C++ Standard Library) | undeclare_no_pointers |
undeclare_reachable | uninitialized_copy | uninitialized_copy_n |
uninitialized_fill | uninitialized_fill_n |
addressof
Gets the true address of an object.
template <class T>
T* addressof(T& Val);
Parameters
Val
The object or function for which to obtain the true address.
Return Value
The actual address of the object or function referenced by Val
, even if an overloaded operator&()
exists.
Remarks
align
Fits storage of the given size—aligned by the given alignment specification—into the first possible address of the given storage.
void* align(
size_t Alignment, // input
size_t Size, // input
void*& Ptr // input/output
size_t& Space // input/output);
Parameters
Alignment
The alignment bound to attempt.
Size
The size in bytes for the aligned storage.
Ptr
The starting address of the available contiguous storage pool to use. This parameter is also an output parameter, and will contain the new starting address if the alignment is successful.
If align()
is unsuccessful, this parameter is not modified.
Space
The total space available to align()
to use in creating the aligned storage. This parameter is also an output parameter, and contains the adjusted space left in the storage buffer after the aligned storage and any associated overhead is subtracted.
If align()
is unsuccessful, this parameter is not modified.
Return Value
A null pointer if the requested aligned buffer would not fit into the available space; otherwise, the new value of Ptr
.
Remarks
The modified Ptr
and Space
parameters enable you to call align()
repeatedly on the same buffer, possibly with different values for Alignment
and Size
. The following code snippet shows one use of align()
.
#include <type_traits> // std::alignment_of()
#include <memory>
//...
char buffer[256]; // for simplicity
size_t alignment = std::alignment_of<int>::value;
void * ptr = buffer;
std::size_t space = sizeof(buffer); // Be sure this results in the true size of your buffer
while (alignment, sizeof(MyObj), ptr, space)) {
// You now have storage the size of MyObj, starting at ptr, aligned on
// int boundary. Use it here if you like, or save off the starting address
// contained in ptr for later use.
// ...
// Last, move starting pointer and decrease available space before
// the while loop restarts.
ptr = reinterpret_cast<char*>(ptr) + sizeof(MyObj);
space -= sizeof(MyObj);
}
// At this point, align() has returned a null pointer, signaling it is not
// possible to allow more aligned storage in this buffer.
allocate_shared
Creates a shared_ptr
to objects that are allocated and constructed for a given type by using a specified allocator. Returns the shared_ptr
.
template <class Type, class Allocator, class... Types>
shared_ptr<Type>
allocate_shared(
Allocator Alloc,
Types&&... Args);
Parameters
Alloc
The allocator used to create objects.
Args
The zero or more arguments that become the objects.
Remarks
The function creates the object shared_ptr``<Type>
, a pointer to Type(``Args``...)
as allocated and constructed by Alloc
.
const_pointer_cast
Const cast to shared_ptr.
template <class Ty, class Other>
shared_ptr<Ty>
const_pointer_cast(const shared_ptr<Other>& sp);
Parameters
Ty
The type controlled by the returned shared pointer.
Other
The type controlled by the argument shared pointer.
Other
The argument shared pointer.
Remarks
The template function returns an empty shared_ptr object if const_cast<Ty*>(sp.get())
returns a null pointer; otherwise it returns a shared_ptr Class<Ty>
object that owns the resource that is owned by sp
. The expression const_cast<Ty*>(sp.get())
must be valid.
Example
// std_tr1__memory__const_pointer_cast.cpp
// compile with: /EHsc
#include <memory>
#include <iostream>
int main()
{
std::shared_ptr<int> sp0(new int);
std::shared_ptr<const int> sp1 =
std::const_pointer_cast<const int>(sp0);
*sp0 = 3;
std::cout << "sp1 == " << *sp1 << std::endl;
return (0);
}
sp1 == 3
declare_no_pointers
Informs a garbage collector that the characters in the memory block defined by a base address pointer and block size contains no traceable pointers.
void declare_no_pointers(
char* ptr,
size_t _Size);
Parameters
Parameter | Description |
---|---|
ptr |
Address of first character that no longer contains traceable pointers. |
_Size |
Size of block that starts at ptr that contains no traceable pointers. |
Remarks
The function informs any garbage collector
that the range of addresses [`` ptr``,
ptr
+
_Size``)
no longer contain traceable pointers. (Any pointers to allocated storage must not be dereferenced unless made reachable
.)
declare_reachable
Informs garbage collection that the indicated address is to allocated storage and is reachable.
void declare_reachable(void* ptr);
Parameters
ptr
A pointer to a reachable, allocated, valid storage area.
Remarks
If ptr
is not null, the function informs any garbage collector that ptr
is hereafter reachable (points to valid allocated storage).
default_delete
Deletes objects allocated with operator new
. Suitable for use with unique_ptr
.
struct default_delete {
constexpr default_delete() noexcept = default;
template <class Other, class = typename enable_if<is_convertible<Other*, T*>::value, void>::type>>
default_delete(const default_delete<Other>&) noexcept;
void operator()(T* Ptr) const noexcept; };
Parameters
Ptr
Pointer to the object to delete.
Other
The type of elements in the array to be deleted.
Remarks
The template class describes a deleter
that deletes scalar objects allocated with operator new
, suitable for use with template class unique_ptr
. It also has the explicit specialization default_delete<Type[]>
.
dynamic_pointer_cast
Dynamic cast to shared_ptr.
template <class Ty, class Other>
shared_ptr<Ty>
dynamic_pointer_cast(const shared_ptr`<`Other>& sp);
Parameters
Ty
The type controlled by the returned shared pointer.
Other
The type controlled by the argument shared pointer.
sp
The argument shared pointer.
Remarks
The template function returns an empty shared_ptr object if dynamic_cast<Ty*>(sp.get())
returns a null pointer; otherwise it returns a shared_ptr Class<Ty>
object that owns the resource that is owned by sp
. The expression dynamic_cast<Ty*>(sp.get())
must be valid.
Example
// std_tr1__memory__dynamic_pointer_cast.cpp
// compile with: /EHsc
#include <memory>
#include <iostream>
struct base
{
virtual ~base()
{
}
int val;
};
struct derived
: public base
{
};
int main()
{
std::shared_ptr<base> sp0(new derived);
std::shared_ptr<derived> sp1 =
std::dynamic_pointer_cast<derived>(sp0);
sp0->val = 3;
std::cout << "sp1->val == " << sp1->val << std::endl;
return (0);
}
sp1->val == 3
get_deleter Function
Get deleter from shared_ptr.
template <class D, class Ty>
D *get_deleter(const shared_ptr<Ty>& sp);
Parameters
D
The type of the deleter.
Ty
The type controlled by the shared pointer.
Other
The shared pointer.
Remarks
The template function returns a pointer to the deleter of type D
that belongs to the shared_ptr Class object sp
. If sp
has no deleter or if its deleter is not of type D
the function returns 0.
Example
// std_tr1__memory__get_deleter.cpp
// compile with: /EHsc
#include <memory>
#include <iostream>
struct base
{
int val;
};
struct deleter
{
void operator()(base *p)
{
delete p;
}
};
int main()
{
std::shared_ptr<base> sp0(new base);
sp0->val = 3;
std::cout << "get_deleter(sp0) != 0 == " << std::boolalpha
<< (std::get_deleter<deleter>(sp0) != 0) << std::endl;
std::shared_ptr<base> sp1(new base, deleter());
sp0->val = 3;
std::cout << "get_deleter(sp1) != 0 == " << std::boolalpha
<< (std::get_deleter<deleter>(sp1) != 0) << std::endl;
return (0);
}
get_deleter
(sp0) != 0 == false
get_deleter
(sp1) != 0 == true
get_pointer_safety
Returns the type of pointer safety assumed by any garbage collector.
pointer_safety get_pointer_safety();
Remarks
The function returns the type of pointer safety assumed by any automatic garbage collector
.
get_temporary_buffer
Allocates temporary storage for a sequence of elements that does not exceed a specified number of elements.
template <class Type>
pair<Type *, ptrdiff_t> get_temporary_buffer(ptrdiff_t count);
Parameters
count
The maximum number of elements requested for which memory is to be allocated.
Return Value
A pair
whose first component is a pointer to the memory that was allocated, and whose second component gives the size of the buffer, indicating the largest number of elements that it could store.
Remarks
The function makes a request for memory and it may not succeed. If no buffer is allocated, then the function returns a pair, with the second component equal to zero and the first component equal to the null pointer.
This function should only be used for memory that is temporary.
Example
// memory_get_temp_buf.cpp
// compile with: /EHsc
#include <memory>
#include <iostream>
using namespace std;
int main( )
{
// Create an array of ints
int intArray [ ] = { 10, 20, 30, 40, 100, 200, 300, 1000, 2000 };
int count = sizeof ( intArray ) / sizeof ( int );
cout << "The number of integers in the array is: "
<< count << "." << endl;
pair<int *, ptrdiff_t> resultPair;
resultPair = get_temporary_buffer<int>( count );
cout << "The number of elements that the allocated memory\n"
<< "could store is given by: resultPair.second = "
<< resultPair.second << "." << endl;
}
The number of integers in the array is: 9.
The number of elements that the allocated memory
could store is given by: resultPair.second = 9.
make_shared
Creates and returns a shared_ptr
that points to the allocated objects that are constructed from zero or more arguments by using the default allocator. Allocates and constructs both an object of the specified type and a shared_ptr
to manage shared ownership of the object, and returns the shared_ptr
.
template <class Type, class... Types>
shared_ptr<Type>
make_shared(
Types&&... _Args);
Parameters
Parameter | Description |
---|---|
_Args |
Zero or more constructor arguments. The function infers which constructor overload to invoke based on the arguments that are provided. |
Remarks
Use make_shared
as a simple and more efficient way to create an object and a shared_ptr
to manage shared access to the object at the same time. Semantically, these two statements are equivalent:
auto sp = std::shared_ptr<Example>(new Example(argument));
auto msp = std::make_shared<Example>(argument);
However, the first statement makes two allocations, and if the allocation of the shared_ptr
fails after the allocation of the Example
object has succeeded, then the unnamed Example
object is leaked. The statement that uses make_shared
is simpler because there's only one function call involved. It's more efficient because the library can make a single allocation for both the object and the smart pointer. This is both faster and leads to less memory fragmentation, and there is no chance of an exception on one allocation but not the other. Performance is improved by better locality for code that references the object and updates the reference counts in the smart pointer.
Consider using make_unique if you do not need shared access to the object. Use allocate_shared if you need to specify a custom allocator for the object. You can't use make_shared
if your object requires a custom deleter, because there is no way to pass the deleter as an argument.
The following example shows how to create shared pointers to a type by invoking specific constructor overloads.
Example
// stl_make_shared.cpp
// Compile by using: cl /W4 /EHsc stl_make_shared.cpp
#include <iostream>
#include <string>
#include <memory>
#include <vector>
class Song {
public:
std::wstring title_;
std::wstring artist_;
Song(std::wstring title, std::wstring artist) : title_(title), artist_(artist) {}
Song(std::wstring title) : title_(title), artist_(L"Unknown") {}
};
void CreateSharedPointers() {
// Okay, but less efficient to have separate allocations for
// Song object and shared_ptr control block.
auto song = new Song(L"Ode to Joy", L"Beethoven");
std::shared_ptr<Song> sp0(song);
// Use make_shared function when possible. Memory for control block
// and Song object are allocated in the same call:
auto sp1 = std::make_shared<Song>(L"Yesterday", L"The Beatles");
auto sp2 = std::make_shared<Song>(L"Blackbird", L"The Beatles");
// make_shared infers which constructor to use based on the arguments.
auto sp3 = std::make_shared<Song>(L"Greensleeves");
// The playlist vector makes copies of the shared_ptr pointers.
std::vector<std::shared_ptr<Song>> playlist;
playlist.push_back(sp0);
playlist.push_back(sp1);
playlist.push_back(sp2);
playlist.push_back(sp3);
playlist.push_back(sp1);
playlist.push_back(sp2);
for (auto&& sp : playlist) {
std::wcout << L"Playing " << sp->title_ <<
L" by " << sp->artist_ << L", use count: " <<
sp.use_count() << std::endl;
}
}
int main() {
CreateSharedPointers();
}
The example produces this output:
Playing Ode to Joy by Beethoven, use count: 2
Playing Yesterday by The Beatles, use count: 3
Playing Blackbird by The Beatles, use count: 3
Playing Greensleeves by Unknown, use count: 2
Playing Yesterday by The Beatles, use count: 3
Playing Blackbird by The Beatles, use count: 3
make_unique
Creates and returns a unique_ptr to an object of the specified type, which is constructed by using the specified arguments.
// make_unique<T>template <class T,
class... Types>
unique_ptr<T> make_unique(Types&&... Args)
{
return (unique_ptr<T>(new T(forward<Types>(Args)...)));
}
// make_unique<T[]>
template <class T>
make_unique(size_t Size)
{
return (unique_ptr<T>(new Elem[Size]()));
}
// make_unique<T[N]> disallowed
template <class T,
class... Types>
typename enable_if<extent<T>::value != 0,
void>::type make_unique(Types&&...) = delete;
Parameters
T
The type of the object that the unique_ptr
will point to.
Types
The types of the constructor arguments specified by Args
.
Args
The arguments to be passed to the constructor of the object of type T
.
Elem
An array of elements of type T
.
Size
The number of elements to allocate space for in the new array.
Remarks
The first overload is used for single objects, the second overload is invoked for arrays, and the third overload prevents the prevents you from specifying an array size in the type argument (make_unique<T[N]>); this construction is not supported by the current standard. When you use make_unique
to create a unique_ptr
to an array, you have to initialize the array elements separately. If you are considering this overload, perhaps a better choice is to use a std::vector.
Because make_unique
is carefully implemented for exception safety, we recommend that you use make_unique
instead of directly calling unique_ptr
constructors.
Example
The following example shows how to use make_unique
. For more examples, see How to: Create and Use unique_ptr Instances.
class Animal
{
private:
std::wstring genus;
std::wstring species;
int age;
double weight;
public:
Animal(const wstring&, const wstring&, int, double){/*...*/ }
Animal(){}
};
void MakeAnimals()
{
// Use the Animal default constructor.
unique_ptr<Animal> p1 = make_unique<Animal>();
// Use the constructor that matches these arguments
auto p2 = make_unique<Animal>(L"Felis", L"Catus", 12, 16.5);
// Create a unique_ptr to an array of 5 Animals
unique_ptr<Animal[]> p3 = make_unique<Animal[]>(5);
// Initialize the elements
p3[0] = Animal(L"Rattus", L"norvegicus", 3, 2.1);
p3[1] = Animal(L"Corynorhinus", L"townsendii", 4, 1.08);
// auto p4 = p2; //C2280
vector<unique_ptr<Animal>> vec;
// vec.push_back(p2); //C2280
// vector<unique_ptr<Animal>> vec2 = vec; // C2280
// OK. p2 no longer points to anything
vec.push_back(std::move(p2));
// unique_ptr overloads operator bool
wcout << boolalpha << (p2 == false) << endl; // Prints "true"
// OK but now you have two pointers to the same memory location
Animal* pAnimal = p2.get();
// OK. p2 no longer points to anything
Animal* p5 = p2.release();
}
When you see error C2280 in connection with a unique_ptr
, it is almost certainly because you are attempting to invoke its copy constructor, which is a deleted function.
owner_less
Allows ownership-based mixed comparisons of shared and weak pointers. Returns true
if the left parameter is ordered before right parameter by the member function owner_before
.
template <class Type>
struct owner_less; // not defined
template <class Type>
struct owner_less<shared_ptr<Type>> {
bool operator()(
const shared_ptr<Type>& left,
const shared_ptr<Type>& right);
bool operator()(
const shared_ptr<Type>& left,
const weak_ptr<Type>& right);
bool operator()(
const weak_ptr<Type>& left,
const shared_ptr<Type>& right);
};
template <class Type>
struct owner_less<weak_ptr<Type>>
bool operator()(
const weak_ptr<Type>& left,
const weak_ptr<Type>& right);
bool operator()(
const weak_ptr<Type>& left,
const shared_ptr<Ty>& right);
bool operator()(
const shared_ptr<Type>& left,
const weak_ptr<Type>& right);
};
Parameters
_left
A shared or weak pointer.
right
A shared or weak pointer.
Remarks
The template classes define all their member operators as returning left``.owner_before(`` right``)
.
return_temporary_buffer
Deallocates the temporary memory that was allocated using the get_temporary_buffer
template function.
template <class Type>
void return_temporary_buffer(Type* _Pbuf);
Parameters
_Pbuf
A pointer to the memory to be deallocated.
Remarks
This function should only be used for memory that is temporary.
Example
// memory_ret_temp_buf.cpp
// compile with: /EHsc
#include <memory>
#include <iostream>
using namespace std;
int main( )
{
// Create an array of ints
int intArray [ ] = { 10, 20, 30, 40, 100, 200, 300 };
int count = sizeof ( intArray ) / sizeof ( int );
cout << "The number of integers in the array is: "
<< count << "." << endl;
pair<int *, ptrdiff_t> resultPair;
resultPair = get_temporary_buffer<int>( count );
cout << "The number of elements that the allocated memory\n"
<< " could store is given by: resultPair.second = "
<< resultPair.second << "." << endl;
int* tempBuffer = resultPair.first;
// Deallocates memory allocated with get_temporary_buffer
return_temporary_buffer ( tempBuffer );
}
The number of integers in the array is: 7.
The number of elements that the allocated memory
could store is given by: resultPair.second = 7.
static_pointer_cast
Static cast to shared_ptr.
template <class Ty, class Other>
shared_ptr<Ty>
static_pointer_cast(const shared_ptr<Other>& sp);
Parameters
Ty
The type controlled by the returned shared pointer.
Other
The type controlled by the argument shared pointer.
Other
The argument shared pointer.
Remarks
The template function returns an empty shared_ptr object if sp
is an empty shared_ptr
object; otherwise it returns a shared_ptr Class<Ty>
object that owns the resource that is owned by sp
. The expression static_cast<Ty*>(sp.get())
must be valid.
Example
// std_tr1__memory__static_pointer_cast.cpp
// compile with: /EHsc
#include <memory>
#include <iostream>
struct base
{
int val;
};
struct derived
: public base
{
};
int main()
{
std::shared_ptr<base> sp0(new derived);
std::shared_ptr<derived> sp1 =
std::static_pointer_cast<derived>(sp0);
sp0->val = 3;
std::cout << "sp1->val == " << sp1->val << std::endl;
return (0);
}
sp1->val == 3
swap (C++ Standard Library)
Swap two shared_ptr or weak_ptr objects.
template <class Ty, class Other>
void swap(shared_ptr<Ty>& left, shared_ptr<Other>& right);
template <class Ty, class Other>
void swap(weak_ptr<Ty>& left, weak_ptr<Other>& right);
Parameters
Ty
The type controlled by the left shared/weak pointer.
Other
The type controlled by the right shared/weak pointer.
left
The left shared/weak pointer.
right
The right shared/weak pointer.
Remarks
The template functions call left.swap(right)
.
Example
// std_tr1__memory__swap.cpp
// compile with: /EHsc
#include <memory>
#include <iostream>
struct deleter
{
void operator()(int *p)
{
delete p;
}
};
int main()
{
std::shared_ptr<int> sp1(new int(5));
std::shared_ptr<int> sp2(new int(10));
std::cout << "*sp1 == " << *sp1 << std::endl;
sp1.swap(sp2);
std::cout << "*sp1 == " << *sp1 << std::endl;
swap(sp1, sp2);
std::cout << "*sp1 == " << *sp1 << std::endl;
std::cout << std::endl;
std::weak_ptr<int> wp1(sp1);
std::weak_ptr<int> wp2(sp2);
std::cout << "*wp1 == " << *wp1.lock() << std::endl;
wp1.swap(wp2);
std::cout << "*wp1 == " << *wp1.lock() << std::endl;
swap(wp1, wp2);
std::cout << "*wp1 == " << *wp1.lock() << std::endl;
return (0);
}
*sp1 == 5
*sp1 == 10
*sp1 == 5
*wp1 == 5
*wp1 == 10
*wp1 == 5
undeclare_no_pointers
Informs a garbage collector that the characters in the memory block defined by a base address pointer and block size may now contain traceable pointers.
void undeclare_no_pointers(
char* ptr,
size_t _Size);
Remarks
The function informs any garbage collector
that the range of addresses [`` ptr``,
ptr
+
_Size``)
may now contain traceable pointers
.
undeclare_reachable
Informs a garbage_collector
that a specified memory location is not reachable.
template <class Type>
Type *undeclare_reachable(Type* ptr);
Parameters
Parameter | Description |
---|---|
ptr |
A pointer to the memory address to be declared not reachable. |
Remarks
If ptr
is not null
, the function informs any garbage collector
that ptr
is hereafter not reachable
. It returns a safely derived
pointer that compares equal to ptr
.
uninitialized_copy
Copies objects from a specified source range into an uninitialized destination range.
template <class InputIterator, class ForwardIterator>
ForwardIterator uninitialized_copy(InputIterator first, InputIterator last, ForwardIterator dest);
Parameters
first
An input iterator addressing the first element in the source range.
last
An input iterator addressing the last element in the source range.
dest
A forward iterator addressing the first element in the destination range.
Return Value
A forward iterator addressing the first position beyond the destination range, unless the source range was empty and iterator addresses * first.*
Remarks
This algorithm allows the decoupling of memory allocation from object construction.
The template function effectively executes:
while (first!= last)
new ((void*)&* dest ++)
iterator_traits<InputIterator>::value_type (* first ++);
return first;
unless the code throws an exception. In that case, all constructed objects are destroyed and the exception is rethrown.
Example
// memory_uninit_copy.cpp
// compile with: /EHsc /W3
#include <memory>
#include <iostream>
using namespace std;
class Integer
{
public:
Integer( int x ) : val( x ) {}
int get( ) { return val; }
private:
int val;
};
int main( )
{
int Array[] = { 10, 20, 30, 40 };
const int N = sizeof( Array ) / sizeof( int );
int i;
cout << "The initialized Array contains " << N << " elements: ";
for (i = 0 ; i < N; i++ )
{
cout << " " << Array [ i ];
}
cout << endl;
Integer* ArrayPtr = ( Integer* ) malloc( N * sizeof( int ) );
Integer* LArrayPtr = uninitialized_copy(
Array, Array + N, ArrayPtr); // C4996
cout << "Address of position after the last element in the array is: "
<< &Array[0] + N << endl;
cout << "The iterator returned by uninitialized_copy addresses: "
<< ( void* )LArrayPtr << endl;
cout << "The address just beyond the last copied element is: "
<< ( void* )( ArrayPtr + N ) << endl;
if ( ( &Array[0] + N ) == ( void* )LArrayPtr )
cout << "The return value is an iterator "
<< "pointing just beyond the original array." << endl;
else
cout << "The return value is an iterator "
<< "not pointing just beyond the original array." << endl;
if ( ( void* )LArrayPtr == ( void* )( ArrayPtr + N ) )
cout << "The return value is an iterator "
<< "pointing just beyond the copied array." << endl;
else
cout << "The return value is an iterator "
<< "not pointing just beyond the copied array." << endl;
free ( ArrayPtr );
cout << "Note that the exact addresses returned will vary\n"
<< "with the memory allocation in individual computers."
<< endl;
}
uninitialized_copy_n
Creates a copy of a specified number of elements from an input iterator. The copies are put in a forward iterator.
template <class InputIterator, class Size, class ForwardIterator>
ForwardIterator uninitialized_copy_n(
InputIterator first,
Size count,
ForwardIterator dest);
Parameters
first
An input iterator that refers to the object to copy.
count
A signed or unsigned integer type specifying the number of times to copy the object.
dest
A forward iterator that refers to where the new copies go.
Return Value
A forward iterator that addresses the first position beyond the destination. If the source range was empty, the iterator addresses first
.
Remarks
The template function effectively executes the following:
for (; 0 < count; -- count)
new ((void *)&*
dest
++)
iterator_traits<InputIterator>::value_type(*
first
++);
return dest;
unless the code throws an exception. In that case, all constructed objects are destroyed and the exception is rethrown.
uninitialized_fill
Copies objects of a specified value into an uninitialized destination range.
template <class ForwardIterator, class Type>
void uninitialized_fill(ForwardIterator first, ForwardIterator last, const Type& val);
Parameters
first
A forward iterator addressing the first element in the destination range that is to be initiated.
last
A forward iterator addressing the last element in the destination range that is to be initiated.
val
The value to be used to initialize the destination range.
Remarks
This algorithm allows the decoupling of memory allocation from object construction.
The template function effectively executes:
while (first!= last)
new ((void *)&* first ++)
iterator_traits<ForwardIterator>::value_type (_ Val);
unless the code throws an exception. In that case, all constructed objects are destroyed and the exception is rethrown.
Example
// memory_uninit_fill.cpp
// compile with: /EHsc
#include <memory>
#include <iostream>
using namespace std;
class Integer { // No default constructor
public:
Integer( int x ) : val( x ) {}
int get( ) { return val; }
private:
int val;
};
int main( )
{
const int N = 10;
Integer val ( 25 );
Integer* Array = ( Integer* ) malloc( N * sizeof( int ) );
uninitialized_fill( Array, Array + N, val );
int i;
cout << "The initialized Array contains: ";
for ( i = 0 ; i < N; i++ )
{
cout << Array [ i ].get( ) << " ";
}
cout << endl;
}
The initialized Array contains: 25 25 25 25 25 25 25 25 25 25
uninitialized_fill_n
Copies objects of a specified value into specified number of elements into an uninitialized destination range.
template <class FwdIt, class Size, class Type>
void uninitialized_fill_n(ForwardIterator first, Size count, const Type& val);
Parameters
first
A forward iterator addressing the first element in the destination range to be initiated.
count
The number of elements to be initialized.
val
The value to be used to initialize the destination range.
Remarks
This algorithm allows the decoupling of memory allocation from object construction.
The template function effectively executes:
while (0 <count--)
new ((void*)&* first ++)
iterator_traits<ForwardIterator>::value_type(val);
unless the code throws an exception. In that case, all constructed objects are destroyed and the exception is rethrown.
Example
// memory_uninit_fill_n.cpp
// compile with: /EHsc /W3
#include <memory>
#include <iostream>
using namespace std;
class Integer { // No default constructor
public:
Integer( int x ) : val( x ) {}
int get( ) { return val; }
private:
int val;
};
int main() {
const int N = 10;
Integer val ( 60 );
Integer* Array = ( Integer* ) malloc( N * sizeof( int ) );
uninitialized_fill_n( Array, N, val ); // C4996
int i;
cout << "The uninitialized Array contains: ";
for ( i = 0 ; i < N; i++ )
cout << Array [ i ].get( ) << " ";
}