QUniform Class
QUniform distribution configuration.
- Inheritance
-
azure.ai.ml.entities._job.sweep.search_space.UniformQUniform
Constructor
QUniform(min_value: int | float | None = None, max_value: int | float | None = None, q: int | None = None, **kwargs: Any)
Parameters
Name | Description |
---|---|
min_value
|
Minimum value of the distribution. Default value: None
|
max_value
|
Maximum value of the distribution. Default value: None
|
q
|
Quantization factor. Default value: None
|
Examples
Configuring QUniform distributions for a hyperparameter sweep on a Command job.
from azure.ai.ml import command
job = command(
inputs=dict(kernel="linear", penalty=1.0),
compute=cpu_cluster,
environment=f"{job_env.name}:{job_env.version}",
code="./scripts",
command="python scripts/train.py --kernel $kernel --penalty $penalty",
experiment_name="sklearn-iris-flowers",
)
# we can reuse an existing Command Job as a function that we can apply inputs to for the sweep configurations
from azure.ai.ml.sweep import QUniform, TruncationSelectionPolicy, Uniform
job_for_sweep = job(
kernel=Uniform(min_value=0.0005, max_value=0.005),
penalty=QUniform(min_value=0.05, max_value=0.75, q=1),
)
sweep_job = job_for_sweep.sweep(
sampling_algorithm="random",
primary_metric="best_val_acc",
goal="Maximize",
max_total_trials=8,
max_concurrent_trials=4,
early_termination_policy=TruncationSelectionPolicy(delay_evaluation=5, evaluation_interval=2),
)
Collaborate with us on GitHub
The source for this content can be found on GitHub, where you can also create and review issues and pull requests. For more information, see our contributor guide.
Azure SDK for Python