AzureTextEmbedding Class
Azure Text Embedding class.
Note: This class is experimental and may change in the future.
Initialize an AzureTextEmbedding service.
service_id: The service ID. (Optional) api_key {str | None}: The optional api key. If provided, will override the value in the
env vars or .env file.
deployment_name {str | None}: The optional deployment. If provided, will override the value (text_deployment_name) in the env vars or .env file.
endpoint {str | None}: The optional deployment endpoint. If provided will override the value in the env vars or .env file.
base_url {str | None}: The optional deployment base_url. If provided will override the value in the env vars or .env file.
api_version {str | None}: The optional deployment api version. If provided will override the value in the env vars or .env file.
ad_token {str | None}: The Azure AD token for authentication. (Optional) ad_auth {AsyncAzureADTokenProvider | None}: Whether to use Azure Active Directory authentication.
(Optional) The default value is False.
default_headers: The default headers mapping of string keys to string values for HTTP requests. (Optional)
async_client (Optional[AsyncAzureOpenAI]): An existing client to use. (Optional) env_file_path (str | None): Use the environment settings file as a fallback to
environment variables. (Optional)
- Inheritance
-
AzureTextEmbeddingAzureTextEmbedding
Constructor
AzureTextEmbedding(service_id: str | None = None, api_key: str | None = None, deployment_name: str | None = None, endpoint: str | None = None, base_url: str | None = None, api_version: str | None = None, ad_token: str | None = None, ad_token_provider: Callable[[], str | Awaitable[str]] | None = None, default_headers: Mapping[str, str] | None = None, async_client: AsyncAzureOpenAI | None = None, env_file_path: str | None = None)
Parameters
Name | Description |
---|---|
service_id
|
Default value: None
|
api_key
|
Default value: None
|
deployment_name
|
Default value: None
|
endpoint
|
Default value: None
|
base_url
|
Default value: None
|
api_version
|
Default value: None
|
ad_token
|
Default value: None
|
ad_token_provider
|
Default value: None
|
default_headers
|
Default value: None
|
async_client
|
Default value: None
|
env_file_path
|
Default value: None
|
Methods
from_dict |
Initialize an Azure OpenAI service from a dictionary of settings. |
from_dict
Initialize an Azure OpenAI service from a dictionary of settings.
from_dict(settings: dict[str, Any]) -> AzureTextEmbedding
Parameters
Name | Description |
---|---|
settings
Required
|
A dictionary of settings for the service. should contain keys: deployment_name, endpoint, api_key and optionally: api_version, ad_auth |
Attributes
model_computed_fields
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}
model_config
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'populate_by_name': True, 'validate_assignment': True}
model_fields
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.
This replaces Model.fields from Pydantic V1.
model_fields: ClassVar[Dict[str, FieldInfo]] = {'ai_model_id': FieldInfo(annotation=str, required=True, metadata=[StringConstraints(strip_whitespace=True, to_upper=None, to_lower=None, strict=None, min_length=1, max_length=None, pattern=None)]), 'ai_model_type': FieldInfo(annotation=OpenAIModelTypes, required=False, default=<OpenAIModelTypes.CHAT: 'chat'>), 'client': FieldInfo(annotation=AsyncOpenAI, required=True), 'completion_tokens': FieldInfo(annotation=int, required=False, default=0), 'prompt_tokens': FieldInfo(annotation=int, required=False, default=0), 'service_id': FieldInfo(annotation=str, required=False, default=''), 'total_tokens': FieldInfo(annotation=int, required=False, default=0)}
ai_model_type
ai_model_type: OpenAIModelTypes
client
client: AsyncOpenAI
completion_tokens
completion_tokens: int
is_experimental
is_experimental = True
prompt_tokens
prompt_tokens: int
total_tokens
total_tokens: int