OpenAITextEmbedding Class
OpenAI Text Embedding class.
Note: This class is experimental and may change in the future.
Initializes a new instance of the OpenAITextCompletion class.
- Inheritance
-
OpenAITextEmbeddingOpenAITextEmbedding
Constructor
OpenAITextEmbedding(ai_model_id: str | None = None, api_key: str | None = None, org_id: str | None = None, service_id: str | None = None, default_headers: Mapping[str, str] | None = None, async_client: AsyncOpenAI | None = None, env_file_path: str | None = None, env_file_encoding: str | None = None)
Parameters
Name | Description |
---|---|
ai_model_id
|
OpenAI model name, see https://platform.openai.com/docs/models Default value: None
|
service_id
|
<xref:<xref:semantic_kernel.connectors.ai.open_ai.str | None>>
Service ID tied to the execution settings. Default value: None
|
api_key
|
<xref:<xref:semantic_kernel.connectors.ai.open_ai.str | None>>
The optional API key to use. If provided will override, the env vars or .env file value. Default value: None
|
org_id
|
<xref:<xref:semantic_kernel.connectors.ai.open_ai.str | None>>
The optional org ID to use. If provided will override, the env vars or .env file value. Default value: None
|
default_headers
|
The default headers mapping of string keys to string values for HTTP requests. (Optional) Default value: None
|
async_client
|
<xref:Optional>[<xref:AsyncOpenAI>]
An existing client to use. (Optional) Default value: None
|
env_file_path
|
<xref:<xref:semantic_kernel.connectors.ai.open_ai.str | None>>
Use the environment settings file as a fallback to environment variables. (Optional) Default value: None
|
env_file_encoding
|
<xref:<xref:semantic_kernel.connectors.ai.open_ai.str | None>>
The encoding of the environment settings file. (Optional) Default value: None
|
Methods
from_dict |
Initialize an Open AI service from a dictionary of settings. |
from_dict
Initialize an Open AI service from a dictionary of settings.
from_dict(settings: dict[str, Any]) -> T_
Parameters
Name | Description |
---|---|
settings
Required
|
A dictionary of settings for the service. |
Attributes
model_computed_fields
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
model_computed_fields: ClassVar[Dict[str, ComputedFieldInfo]] = {}
model_config
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
model_config: ClassVar[ConfigDict] = {'arbitrary_types_allowed': True, 'populate_by_name': True, 'validate_assignment': True}
model_fields
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.
This replaces Model.fields from Pydantic V1.
model_fields: ClassVar[Dict[str, FieldInfo]] = {'ai_model_id': FieldInfo(annotation=str, required=True, metadata=[StringConstraints(strip_whitespace=True, to_upper=None, to_lower=None, strict=None, min_length=1, max_length=None, pattern=None)]), 'ai_model_type': FieldInfo(annotation=OpenAIModelTypes, required=False, default=<OpenAIModelTypes.CHAT: 'chat'>), 'client': FieldInfo(annotation=AsyncOpenAI, required=True), 'completion_tokens': FieldInfo(annotation=int, required=False, default=0), 'prompt_tokens': FieldInfo(annotation=int, required=False, default=0), 'service_id': FieldInfo(annotation=str, required=False, default=''), 'total_tokens': FieldInfo(annotation=int, required=False, default=0)}
ai_model_type
ai_model_type: OpenAIModelTypes
client
client: AsyncOpenAI
completion_tokens
completion_tokens: int
is_experimental
is_experimental = True
prompt_tokens
prompt_tokens: int
total_tokens
total_tokens: int