Compartir a través de


Databricks Runtime 8.3 (EoS)

Nota:

El soporte técnico con esta versión de Databricks Runtime ha finalizado. Para obtener la fecha de finalización del soporte técnico, consulte Historial de finalización del soporte técnico. Para conocer todas las versiones de Databricks Runtime compatibles, consulte las notas de la versión de Databricks Runtime versiones y compatibilidad.

Las siguientes notas de la versión proporcionan información sobre Databricks Runtime 8.3 y Databricks Runtime 8.3 Photon, con tecnología de Apache Spark 3.1.1. Databricks publicó esta versión en junio de 2021. Photon se encuentra en versión preliminar pública.

Nuevas características y mejoras

Columnas generadas en tablas delta (versión preliminar pública)

Delta Lake ahora admite columnas generadas, que son un tipo especial de columna cuyos valores se generan automáticamente según una función especificada por el usuario sobre otras columnas de la tabla delta. Puede usar la mayoría de las funciones de SQL integradas para generar los valores de estas columnas generadas. Por ejemplo, puede generar automáticamente una columna de fecha (para crear particiones de la tabla por fecha) a partir de la columna timestamp; cualquier escritura en la tabla solo deberá especificar los datos de la columna timestamp. Puede crear tablas delta con columnas generadas mediante las API de SQL, Scala, Java o Python.

Para obtener más información, consulte Columnas generadas por Delta Lake.

Características y mejoras del cargador automático

Inferencia de esquema para archivos CSV en el cargador automático

El cargador automático ahora admite la inferencia y la evolución de esquemas en archivos CSV. El cargador automático proporciona las siguientes funcionalidades sobre el analizador de CSV disponible en Apache Spark:

  • Combinación de esquemas: el cargador automático puede ingerir archivos CSV que tienen un esquema diferente (número diferente de columnas u orden diferente de las columnas) entre archivos.
  • Columna de datos rescatados: puede usar la columna de datos rescatados para el rescate de datos inesperados que pueden aparecer en los archivos CSV. Incluye datos que no se pueden analizar en el tipo de datos esperado, columnas que tienen un uso de mayúsculas o minúsculas diferente o valores NULL en el encabezado, o bien columnas adicionales que no formaban parte del esquema esperado.

Consulte Configuración de inferencia y evolución de esquemas en el cargador automático para obtener más detalles.

Tiempo de inicio mejorado para los flujos del cargador automático

Las secuencias del cargador automático ahora realizan el reposición inicial del flujo de forma asincrónica al iniciarse por primera vez, lo que conduce a un tiempo de inicio mucho más rápido del flujo. Esto puede permitirle iterar rápidamente en el código con datos de producción, especialmente si tiene que ingerir datos de directorios que contienen millones o miles de millones de archivos.

Además, el tiempo de arranque de los flujos que se reinician también mejora, ya que hemos paralelizado la descarga y carga de los archivos de RocksDB que el cargador automático utiliza para proporcionar semántica de tipo "exactamente una vez".

Lista de directorios más rápida en el cargador automático

Hemos mejorado en gran medida la eficacia de la lista de directorios en el cargador automático. Un efecto secundario de esta mejora del rendimiento es que el flujo puede enviar más solicitudes de lista al sistema de almacenamiento cuando no hay datos nuevos que procesar, lo que puede provocar un aumento en los cargos de las solicitudes de lista. Como procedimiento recomendado general, Databricks recomienda establecer un intervalo de desencadenador razonable para las canalizaciones de streaming de producción. Consulte Consideraciones de producción para Structured Streaming.

Menor sobrecarga de almacenamiento para los puntos de comprobación del cargador automático

Las secuencias del cargador automático ahora limpian automáticamente los archivos obsoletos del directorio del punto de control de forma asincrónica a fin de evitar que el tamaño del directorio del punto de control crezca indefinidamente y de reducir los costos de almacenamiento.

El cargador automático incluye la ruta de acceso del archivo en la columna de datos rescatados si está disponible.

La columna de datos rescatados proporciona automáticamente la ruta de acceso del archivo de los datos rescatados, si procede, en una columna denominada _file_ path. Esto puede ayudarle a realizar un seguimiento de la causa principal de los problemas de calidad de los datos. La columna no se incluye si el esquema de datos contiene una columna denominada _file_path. Puede usar la configuración de SQL spark.databricks.sql.rescuedDataColumn.filePath.name para cambiar el nombre de la columna si es necesario.

El cargador automático admite el cambio de nombre de los archivos en Azure Data Lake Storage Gen2 en modo de notificación de archivos

El cargador automático ahora admite eventos BlobRenamed para Azure Data Lake Storage Gen2 cuando se ejecuta en modo de notificación de archivos. Para procesar los archivos que se cargan en un contenedor de Azure Data Lake Storage Gen2 mediante una operación de cambio de nombre con notificaciones de archivo, inicie un nuevo flujo con el cargador automático mediante Databricks Runtime 8.3. Para asegurarse de que un archivo se procesa exactamente una vez, compruebe que el cargador automático no vea el directorio de origen desde el que se cambia el nombre del archivo.

Creación de tablas delta con nuevas API mediante programación (versión preliminar pública)

Ahora puede crear nuevas tablas delta mediante programación (con Scala, Java y Python) sin usar las API de DataFrame. Las nuevas API DeltaTableBuilder y DeltaColumnBuilder le permiten especificar todos los detalles de las tablas que puede especificar mediante SQL CREATE TABLE.

Para obtener más información, consulte Creación de una tabla.

Cálculo correcto de los tamaños de tabla delta en SQL ANALYZE

La lógica de análisis existente calcula incorrectamente el tamaño de las tablas delta y actualiza el catálogo con un tamaño incorrecto. La corrección consiste en obtener el tamaño de una tabla delta del registro delta.

Métricas detalladas del rendimiento de RocksDB al usar RocksDBStateStore

Si ha configurado la consulta de streaming estructurado para usar RocksDB como almacén de estado, ahora puede obtener una mejor visibilidad del rendimiento de RocksDB, con métricas detalladas sobre latencias get/put, latencias de compactación, aciertos de caché, etc. Estas métricas están disponibles a través de las API StreamingQueryProgress y StreamingQueryListener para supervisar una consulta de streaming.

Para más información, consulte Configuración del almacén de estado de RocksDB en Azure Databricks.

Escrituras optimizadas automáticas

Las escrituras optimizadas en tablas delta con particiones ahora están habilitadas de forma automática para las consultas de actualización y eliminación que contienen subconsultas.

Habilitación de combinaciones en cubos si solo hay un lado de combinación en cubos

Una nueva configuración spark.databricks.sql.minBucketsForBucketedJoin habilita una combinación en cubos si solo hay un lado de combinación en cubos y el número de cubos no es menor que este valor de configuración. De forma predeterminada, este valor de configuración es el mismo que el número predeterminado de particiones aleatorias (200).

Seguridad mejorada al definir UDF de Spark (versión preliminar pública)

Las funciones de información del usuario current_user y is_member ya no se pueden reemplazar por funciones temporales, como spark.udf.register de Python o create or replace temp function de SQL.

Número reducido de solicitudes al registro de esquema para consultas con from_avro

Las consultas con from_avro compatibles con el registro de esquema ya no generan tantas solicitudes al servicio del registro de esquema, lo que reduce los costos operativos.

Varios resultados en R con ListResults (versión preliminar pública)

Los cuadernos de Databricks R ahora admiten varios resultados en cada celda. Anteriormente solo se representaba un único resultado para cada celda del cuaderno. Actualmente, los resultados de una sola celda en cuadernos de R se muestran en el orden siguiente:

  1. Dirección URL de RShiny
  2. Gráfico
  3. Salidas displayHTML
  4. Tablas
  5. stdout

Actualizaciones de bibliotecas

  • Biblioteca de Python actualizada:
    • Koalas se actualizó de 1.7.0 a 1.8.0.
    • Pandas se actualizó de 1.1.3 a 1.1.5.
    • s3transfer se actualizó de 0.3.4 a 0.3.6.
  • Biblioteca de R actualizada:
    • SparkR se actualizó de 3.1.1 a 3.1.2.
  • Biblioteca de Java actualizada:
    • mariadb-java-client de 2.1.2 a 2.2.5.
    • parquet-column de 1.10.1-databricks6 a 1.10.1-databricks9
    • parquet-common de 1.10.1-databricks6 a 1.10.1-databricks9
    • parquet-encoding de 1.10.1-databricks6 a 1.10.1-databricks9
    • parquet-hadoop de 1.10.1-databricks6 a 1.10.1-databricks9
    • parquet-jackson de 1.10.1-databricks6 a 1.10.1-databricks9

Apache Spark

Databricks Runtime 8.3 incluye Apache Spark 3.1.1. En esta versión, se incluyen todas las correcciones y mejoras de Spark que se han incorporado en Databricks Runtime 8.2 (EoS), junto con las siguientes correcciones de errores y mejoras de Spark:

  • [SPARK-34614] [SQL] Modo ANSI: la conversión de cadena a valor booleano debería producir una excepción al producirse un error de análisis.
  • [SPARK-34246] [FOLLOWUP] Cambio de la definición de "findTightestCommonT...
  • [SPARK-35213] [SQL] Mantenimiento del orden correcto de las estructuras anidadas en las operaciones withField encadenadas.
  • [SPARK-35096] [SQL] SchemaPruning debería cumplir la configuración spark.sql.caseSensitive.
  • [SPARK-35227][BUILD] Actualización de la resolución para spark-packages en SparkSubmit.
  • [SPARK-35224] [SQL] Corrección del desbordamiento del búfer en MutableProjectionSuite.
  • [SPARK-34245][CORE] Comprobación de que Master elimina los ejecutores que no han podido enviar el estado de finalización.
  • [SPARK-34856] [SQL] Modo ANSI: permiso de conversión de tipos complejos como tipo de cadena.
  • [SPARK-34946] [SQL] Bloqueo de subconsulta escalar correlacionada no admitida en Agregado.
  • [SPARK-35014] Corrección del patrón PhysicalAggregation para no reescribir expresiones que se pueden plegar.
  • [SPARK-34769] [SQL] AnsiTypeCoercion: devolver tipo convertible más próximo...

Entorno del sistema

  • Sistema operativo: Ubuntu 18.04.5 LTS
  • Java: Zulu 8.52.0.23-CA-linux64 (compilación 1.8.0_282-b08)
  • Scala: 2.12.10
  • Python: 3.8.8
  • R: versión de R 4.0.4 (2021-02-15)
  • Delta Lake 1.0.0

Bibliotecas de Python instaladas

Biblioteca Versión Biblioteca Versión Biblioteca Versión
appdirs 1.4.4 asn1crypto 1.4.0 backcall 0.2.0
boto3 1.16.7 botocore 1.19.7 brotlipy 0.7.0
certifi 2020.12.5 cffi 1.14.3 chardet 3.0.4
criptografía 3.1.1 cycler 0.10.0 Cython 0.29.21
decorator 4.4.2 distlib 0.3.1 docutils 0.15.2
entrypoints 0,3 facets-overview 1.0.0 filelock 3.0.12
idna 2.10 ipykernel 5.3.4 ipython 7.19.0
ipython-genutils 0.2.0 jedi 0.17.2 jmespath 0.10.0
joblib 0.17.0 jupyter-client 6.1.7 jupyter-core 4.6.3
kiwisolver 1.3.0 koalas 1.8.0 matplotlib 3.2.2
numpy 1.19.2 pandas 1.1.5 parso 0.7.0
patsy 0.5.1 pexpect 4.8.0 pickleshare 0.7.5
pip 20.2.4 plotly 4.14.3 prompt-toolkit 3.0.8
protobuf 3.17.0 psycopg2 2.8.5 ptyprocess 0.6.0
pyarrow 1.0.1 pycparser 2,20 Pygments 2.7.2
pyOpenSSL 19.1.0 pyparsing 2.4.7 PySocks 1.7.1
Python-dateutil 2.8.1 pytz 2020.5 pyzmq 19.0.2
Solicitudes 2.24.0 retrying 1.3.3 s3transfer 0.3.6
scikit-learn 0.23.2 scipy 1.5.2 seaborn 0.10.0
setuptools 50.3.1 six (seis) 1.15.0 statsmodels 0.12.0
threadpoolctl 2.1.0 tornado 6.0.4 traitlets 5.0.5
urllib3 1.25.11 virtualenv 20.2.1 wcwidth 0.2.5
wheel 0.35.1

Bibliotecas de R instaladas

Las bibliotecas de R se instalan desde la instantánea de Microsoft CRAN del 02-11-2020.

Biblioteca Versión Biblioteca Versión Biblioteca Versión
askpass 1.1 assertthat 0.2.1 backports 1.2.1
base 4.0.4 base64enc 0.1-3 BH 1.72.0-3
bit 4.0.4 bit64 4.0.5 blob 1.2.1
boot 1.3-27 brew 1.0-6 brio 1.1.0
broom 0.7.2 callr 3.5.1 caret 6.0-86
cellranger 1.1.0 chron 2.3-56 clase 7.3-18
cli 2.2.0 clipr 0.7.1 cluster 2.1.1
codetools 0.2-18 colorspace 2.0-0 commonmark 1.7
compiler 4.0.4 config 0,3 covr 3.5.1
cpp11 0.2.4 crayon 1.3.4 credentials 1.3.0
diafonía 1.1.0.1 curl 4.3 data.table 1.13.4
conjuntos de datos 4.0.4 DBI 1.1.0 dbplyr 2.0.0
desc 1.2.0 devtools 2.3.2 diffobj 0.3.2
digest 0.6.27 dplyr 1.0.2 DT 0.16
ellipsis 0.3.1 evaluate 0.14 fansi 0.4.1
farver 2.0.3 fastmap 1.0.1 forcats 0.5.0
foreach 1.5.1 foreign 0.8-81 forge 0.2.0
fs 1.5.0 future 1.21.0 generics 0.1.0
gert 1.0.2 ggplot2 3.3.2 gh 1.2.0
gitcreds 0.1.1 glmnet 4.0-2 globals 0.14.0
glue 1.4.2 gower 0.2.2 elementos gráficos 4.0.4
grDevices 4.0.4 grid 4.0.4 gridExtra 2.3
gsubfn 0.7 gtable 0.3.0 haven 2.3.1
highr 0.8 hms 0.5.3 htmltools 0.5.0
htmlwidgets 1.5.3 httpuv 1.5.4 httr 1.4.2
hwriter 1.3.2 hwriterPlus 1.0-3 ini 0.3.1
ipred 0.9-9 isoband 0.2.3 iterators 1.0.13
jsonlite 1.7.2 KernSmooth 2.23-18 knitr 1.30
labeling 0.4.2 later 1.1.0.1 lattice 0.20-41
lava 1.6.8.1 lazyeval 0.2.2 ciclo de vida 0.2.0
listenv 0.8.0 lubridate 1.7.9.2 magrittr 2.0.1
markdown 1.1 MASS 7.3-53.1 Matriz 1.3-2
memoise 1.1.0 methods 4.0.4 mgcv 1.8-33
mime 0.9 ModelMetrics 1.2.2.2 modelr 0.1.8
munsell 0.5.0 nlme 3.1-152 nnet 7.3-15
numDeriv 2016.8-1.1 openssl 1.4.3 parallel 4.0.4
parallelly 1.22.0 pillar 1.4.7 pkgbuild 1.1.0
pkgconfig 2.0.3 pkgload 1.1.0 plogr 0.2.0
plyr 1.8.6 praise 1.0.0 prettyunits 1.1.1
pROC 1.16.2 processx 3.4.5 prodlim 2019.11.13
progreso 1.2.2 promises 1.1.1 proto 1.0.0
ps 1.5.0 purrr 0.3.4 r2d3 0.2.3
R6 2.5.0 randomForest 4.6-14 rappdirs 0.3.1
rcmdcheck 1.3.3 RColorBrewer 1.1-2 Rcpp 1.0.5
readr 1.4.0 readxl 1.3.1 recipes 0.1.15
rematch 1.0.1 rematch2 2.1.2 remotes 2.2.0
reprex 0.3.0 reshape2 1.4.4 rex 1.2.0
rlang 0.4.9 rmarkdown 2.6 RODBC 1.3-17
roxygen2 7.1.1 rpart 4.1-15 rprojroot 2.0.2
Rserve 1.8-7 RSQLite 2.2.1 rstudioapi 0,13
rversions 2.0.2 rvest 0.3.6 scales 1.1.1
selectr 0.4-2 sessioninfo 1.1.1 shape 1.4.5
shiny 1.5.0 sourcetools 0.1.7 sparklyr 1.5.2
SparkR 3.1.2 spatial 7.3-11 splines 4.0.4
sqldf 0.4-11 SQUAREM 2020.5 stats 4.0.4
stats4 4.0.4 stringi 1.5.3 stringr 1.4.0
survival 3.2-7 sys 3.4 tcltk 4.0.4
TeachingDemos 2,10 testthat 3.0.0 tibble 3.0.4
tidyr 1.1.2 tidyselect 1.1.0 tidyverse 1.3.0
timeDate 3043.102 tinytex 0,28 tools 4.0.4
usethis 2.0.0 utf8 1.1.4 utils 4.0.4
uuid 0.1-4 vctrs 0.3.5 viridisLite 0.3.0
waldo 0.2.3 whisker 0,4 withr 2.3.0
xfun 0,19 xml2 1.3.2 xopen 1.0.0
xtable 1.8-4 yaml 2.2.1 zip 2.1.1

Bibliotecas de Java y Scala instaladas (versión de clúster de Scala 2.12)

Identificador de grupo Identificador de artefacto Versión
antlr antlr 2.7.7
com.amazonaws amazon-kinesis-client 1.12.0
com.amazonaws aws-java-sdk-autoscaling 1.11.655
com.amazonaws aws-java-sdk-cloudformation 1.11.655
com.amazonaws aws-java-sdk-cloudfront 1.11.655
com.amazonaws aws-java-sdk-cloudhsm 1.11.655
com.amazonaws aws-java-sdk-cloudsearch 1.11.655
com.amazonaws aws-java-sdk-cloudtrail 1.11.655
com.amazonaws aws-java-sdk-cloudwatch 1.11.655
com.amazonaws aws-java-sdk-cloudwatchmetrics 1.11.655
com.amazonaws aws-java-sdk-codedeploy 1.11.655
com.amazonaws aws-java-sdk-cognitoidentity 1.11.655
com.amazonaws aws-java-sdk-cognitosync 1.11.655
com.amazonaws aws-java-sdk-config 1.11.655
com.amazonaws aws-java-sdk-core 1.11.655
com.amazonaws aws-java-sdk-datapipeline 1.11.655
com.amazonaws aws-java-sdk-directconnect 1.11.655
com.amazonaws aws-java-sdk-directory 1.11.655
com.amazonaws aws-java-sdk-dynamodb 1.11.655
com.amazonaws aws-java-sdk-ec2 1.11.655
com.amazonaws aws-java-sdk-ecs 1.11.655
com.amazonaws aws-java-sdk-efs 1.11.655
com.amazonaws aws-java-sdk-elasticache 1.11.655
com.amazonaws aws-java-sdk-elasticbeanstalk 1.11.655
com.amazonaws aws-java-sdk-elasticloadbalancing 1.11.655
com.amazonaws aws-java-sdk-elastictranscoder 1.11.655
com.amazonaws aws-java-sdk-emr 1.11.655
com.amazonaws aws-java-sdk-glacier 1.11.655
com.amazonaws aws-java-sdk-iam 1.11.655
com.amazonaws aws-java-sdk-importexport 1.11.655
com.amazonaws aws-java-sdk-kinesis 1.11.655
com.amazonaws aws-java-sdk-kms 1.11.655
com.amazonaws aws-java-sdk-lambda 1.11.655
com.amazonaws aws-java-sdk-logs 1.11.655
com.amazonaws aws-java-sdk-machinelearning 1.11.655
com.amazonaws aws-java-sdk-opsworks 1.11.655
com.amazonaws aws-java-sdk-rds 1.11.655
com.amazonaws aws-java-sdk-redshift 1.11.655
com.amazonaws aws-java-sdk-route53 1.11.655
com.amazonaws aws-java-sdk-s3 1.11.655
com.amazonaws aws-java-sdk-ses 1.11.655
com.amazonaws aws-java-sdk-simpledb 1.11.655
com.amazonaws aws-java-sdk-simpleworkflow 1.11.655
com.amazonaws aws-java-sdk-sns 1.11.655
com.amazonaws aws-java-sdk-sqs 1.11.655
com.amazonaws aws-java-sdk-ssm 1.11.655
com.amazonaws aws-java-sdk-storagegateway 1.11.655
com.amazonaws aws-java-sdk-sts 1.11.655
com.amazonaws aws-java-sdk-support 1.11.655
com.amazonaws aws-java-sdk-swf-libraries 1.11.22
com.amazonaws aws-java-sdk-workspaces 1.11.655
com.amazonaws jmespath-java 1.11.655
com.chuusai shapeless_2.12 2.3.3
com.clearspring.analytics flujo 2.9.6
com.databricks Rserve 1.8-3
com.databricks jets3t 0.7.1-0
com.databricks.scalapb compilerplugin_2.12 0.4.15-10
com.databricks.scalapb scalapb-runtime_2.12 0.4.15-10
com.esotericsoftware kryo-shaded 4.0.2
com.esotericsoftware minlog 1.3.0
com.fasterxml classmate 1.3.4
com.fasterxml.jackson.core jackson-annotations 2.10.0
com.fasterxml.jackson.core jackson-core 2.10.0
com.fasterxml.jackson.core jackson-databind 2.10.0
com.fasterxml.jackson.dataformat jackson-dataformat-cbor 2.10.0
com.fasterxml.jackson.datatype jackson-datatype-joda 2.10.0
com.fasterxml.jackson.module jackson-module-paranamer 2.10.0
com.fasterxml.jackson.module jackson-module-scala_2.12 2.10.0
com.github.ben-manes.caffeine caffeine 2.3.4
com.github.fommil jniloader 1.1
com.github.fommil.netlib core 1.1.2
com.github.fommil.netlib native_ref-java 1.1
com.github.fommil.netlib native_ref-java-natives 1.1
com.github.fommil.netlib native_system-java 1.1
com.github.fommil.netlib native_system-java-natives 1.1
com.github.fommil.netlib netlib-native_ref-linux-x86_64-natives 1.1
com.github.fommil.netlib netlib-native_system-linux-x86_64-natives 1.1
com.github.joshelser dropwizard-metrics-hadoop-metrics2-reporter 0.1.2
com.github.luben zstd-jni 1.4.8-1
com.github.wendykierp JTransforms 3.1
com.google.code.findbugs jsr305 3.0.0
com.google.code.gson gson 2.2.4
com.google.flatbuffers flatbuffers-java 1.9.0
com.google.guava guava 15.0
com.google.protobuf protobuf-java 2.6.1
com.h2database h2 1.4.195
com.helger profiler 1.1.1
com.jcraft jsch 0.1.50
com.jolbox bonecp 0.8.0.RELEASE
com.lihaoyi sourcecode_2.12 0.1.9
com.microsoft.azure azure-data-lake-store-sdk 2.3.9
com.microsoft.sqlserver mssql-jdbc 9.2.1.jre8
com.ning compress-lzf 1.0.3
com.sun.mail javax.mail 1.5.2
com.tdunning json 1.8
com.thoughtworks.paranamer paranamer 2.8
com.trueaccord.lenses lenses_2.12 0.4.12
com.twitter chill-java 0.9.5
com.twitter chill_2.12 0.9.5
com.twitter util-app_2.12 7.1.0
com.twitter util-core_2.12 7.1.0
com.twitter util-function_2.12 7.1.0
com.twitter util-jvm_2.12 7.1.0
com.twitter util-lint_2.12 7.1.0
com.twitter util-registry_2.12 7.1.0
com.twitter util-stats_2.12 7.1.0
com.typesafe config 1.2.1
com.typesafe.scala-logging scala-logging_2.12 3.7.2
com.univocity univocity-parsers 2.9.1
com.zaxxer HikariCP 3.1.0
commons-beanutils commons-beanutils 1.9.4
commons-cli commons-cli 1.2
commons-codec commons-codec 1.10
commons-collections commons-collections 3.2.2
commons-configuration commons-configuration 1.6
commons-dbcp commons-dbcp 1.4
commons-digester commons-digester 1.8
commons-fileupload commons-fileupload 1.3.3
commons-httpclient commons-httpclient 3.1
commons-io commons-io 2.4
commons-lang commons-lang 2.6
commons-logging commons-logging 1.1.3
commons-net commons-net 3.1
commons-pool commons-pool 1.5.4
hive-2.3__hadoop-2.7 jets3t-0.7 liball_deps_2.12
hive-2.3__hadoop-2.7 zookeeper-3.4 liball_deps_2.12
info.ganglia.gmetric4j gmetric4j 1.0.10
io.airlift aircompressor 0,10
io.dropwizard.metrics metrics-core 4.1.1
io.dropwizard.metrics metrics-graphite 4.1.1
io.dropwizard.metrics metrics-healthchecks 4.1.1
io.dropwizard.metrics metrics-jetty9 4.1.1
io.dropwizard.metrics metrics-jmx 4.1.1
io.dropwizard.metrics metrics-json 4.1.1
io.dropwizard.metrics metrics-jvm 4.1.1
io.dropwizard.metrics metrics-servlets 4.1.1
io.netty netty-all 4.1.51.Final
io.prometheus simpleclient 0.7.0
io.prometheus simpleclient_common 0.7.0
io.prometheus simpleclient_dropwizard 0.7.0
io.prometheus simpleclient_pushgateway 0.7.0
io.prometheus simpleclient_servlet 0.7.0
io.prometheus.jmx recopilador 0.12.0
jakarta.annotation jakarta.annotation-api 1.3.5
jakarta.validation jakarta.validation-api 2.0.2
jakarta.ws.rs jakarta.ws.rs-api 2.1.6
javax.activation activation 1.1.1
javax.el javax.el-api 2.2.4
javax.jdo jdo-api 3.0.1
javax.servlet javax.servlet-api 3.1.0
javax.servlet.jsp jsp-api 2.1
javax.transaction jta 1.1
javax.transaction transaction-api 1.1
javax.xml.bind jaxb-api 2.2.2
javax.xml.stream stax-api 1.0-2
javolution javolution 5.5.1
jline jline 2.14.6
joda-time joda-time 2.10.5
log4j apache-log4j-extras 1.2.17
log4j log4j 1.2.17
maven-trees hive-2.3__hadoop-2.7 liball_deps_2.12
net.razorvine pyrolite 4.30
net.sf.jpam jpam 1.1
net.sf.opencsv opencsv 2.3
net.sf.supercsv super-csv 2.2.0
net.snowflake snowflake-ingest-sdk 0.9.6
net.snowflake snowflake-jdbc 3.13.3
net.snowflake spark-snowflake_2.12 2.9.0-spark_3.1
net.sourceforge.f2j arpack_combined_all 0,1
org.acplt.remotetea remotetea-oncrpc 1.1.2
org.antlr ST4 4.0.4
org.antlr antlr-runtime 3.5.2
org.antlr antlr4-runtime 4.8-1
org.antlr stringtemplate 3.2.1
org.apache.ant ant 1.9.2
org.apache.ant ant-jsch 1.9.2
org.apache.ant ant-launcher 1.9.2
org.apache.arrow arrow-format 2.0.0
org.apache.arrow arrow-memory-core 2.0.0
org.apache.arrow arrow-memory-netty 2.0.0
org.apache.arrow arrow-vector 2.0.0
org.apache.avro avro 1.8.2
org.apache.avro avro-ipc 1.8.2
org.apache.avro avro-mapred-hadoop2 1.8.2
org.apache.commons commons-compress 1.20
org.apache.commons commons-crypto 1.1.0
org.apache.commons commons-lang3 3.10
org.apache.commons commons-math3 3.4.1
org.apache.commons commons-text 1.6
org.apache.curator curator-client 2.7.1
org.apache.curator curator-framework 2.7.1
org.apache.curator curator-recipes 2.7.1
org.apache.derby derby 10.12.1.1
org.apache.directory.api api-asn1-api 1.0.0-M20
org.apache.directory.api api-util 1.0.0-M20
org.apache.directory.server apacheds-i18n 2.0.0-M15
org.apache.directory.server apacheds-kerberos-codec 2.0.0-M15
org.apache.hadoop hadoop-annotations 2.7.4
org.apache.hadoop hadoop-auth 2.7.4
org.apache.hadoop hadoop-client 2.7.4
org.apache.hadoop hadoop-common 2.7.4
org.apache.hadoop hadoop-hdfs 2.7.4
org.apache.hadoop hadoop-mapreduce-client-app 2.7.4
org.apache.hadoop hadoop-mapreduce-client-common 2.7.4
org.apache.hadoop hadoop-mapreduce-client-core 2.7.4
org.apache.hadoop hadoop-mapreduce-client-jobclient 2.7.4
org.apache.hadoop hadoop-mapreduce-client-shuffle 2.7.4
org.apache.hadoop hadoop-yarn-api 2.7.4
org.apache.hadoop hadoop-yarn-client 2.7.4
org.apache.hadoop hadoop-yarn-common 2.7.4
org.apache.hadoop hadoop-yarn-server-common 2.7.4
org.apache.hive hive-beeline 2.3.7
org.apache.hive hive-cli 2.3.7
org.apache.hive hive-common 2.3.7
org.apache.hive hive-exec-core 2.3.7
org.apache.hive hive-jdbc 2.3.7
org.apache.hive hive-llap-client 2.3.7
org.apache.hive hive-llap-common 2.3.7
org.apache.hive hive-metastore 2.3.7
org.apache.hive hive-serde 2.3.7
org.apache.hive hive-shims 2.3.7
org.apache.hive hive-storage-api 2.7.2
org.apache.hive hive-vector-code-gen 2.3.7
org.apache.hive.shims hive-shims-0.23 2.3.7
org.apache.hive.shims hive-shims-common 2.3.7
org.apache.hive.shims hive-shims-scheduler 2.3.7
org.apache.htrace htrace-core 3.1.0-incubating
org.apache.httpcomponents httpclient 4.5.6
org.apache.httpcomponents httpcore 4.4.12
org.apache.ivy ivy 2.4.0
org.apache.mesos mesos-shaded-protobuf 1.4.0
org.apache.orc orc-core 1.5.12
org.apache.orc orc-mapreduce 1.5.12
org.apache.orc orc-shims 1.5.12
org.apache.parquet parquet-column 1.10.1-databricks9
org.apache.parquet parquet-common 1.10.1-databricks9
org.apache.parquet parquet-encoding 1.10.1-databricks9
org.apache.parquet parquet-format 2.4.0
org.apache.parquet parquet-hadoop 1.10.1-databricks9
org.apache.parquet parquet-jackson 1.10.1-databricks9
org.apache.thrift libfb303 0.9.3
org.apache.thrift libthrift 0.12.0
org.apache.velocity velocity 1.5
org.apache.xbean xbean-asm7-shaded 4.15
org.apache.yetus audience-annotations 0.5.0
org.apache.zookeeper zookeeper 3.4.14
org.codehaus.jackson jackson-core-asl 1.9.13
org.codehaus.jackson jackson-jaxrs 1.9.13
org.codehaus.jackson jackson-mapper-asl 1.9.13
org.codehaus.jackson jackson-xc 1.9.13
org.codehaus.janino commons-compiler 3.0.16
org.codehaus.janino janino 3.0.16
org.datanucleus datanucleus-api-jdo 4.2.4
org.datanucleus datanucleus-core 4.1.17
org.datanucleus datanucleus-rdbms 4.1.19
org.datanucleus javax.jdo 3.2.0-m3
org.eclipse.jetty jetty-client 9.4.36.v20210114
org.eclipse.jetty jetty-continuation 9.4.36.v20210114
org.eclipse.jetty jetty-http 9.4.36.v20210114
org.eclipse.jetty jetty-io 9.4.36.v20210114
org.eclipse.jetty jetty-jndi 9.4.36.v20210114
org.eclipse.jetty jetty-plus 9.4.36.v20210114
org.eclipse.jetty jetty-proxy 9.4.36.v20210114
org.eclipse.jetty jetty-security 9.4.36.v20210114
org.eclipse.jetty jetty-server 9.4.36.v20210114
org.eclipse.jetty jetty-servlet 9.4.36.v20210114
org.eclipse.jetty jetty-servlets 9.4.36.v20210114
org.eclipse.jetty jetty-util 9.4.36.v20210114
org.eclipse.jetty jetty-util-ajax 9.4.36.v20210114
org.eclipse.jetty jetty-webapp 9.4.36.v20210114
org.eclipse.jetty jetty-xml 9.4.36.v20210114
org.fusesource.leveldbjni leveldbjni-all 1.8
org.glassfish.hk2 hk2-api 2.6.1
org.glassfish.hk2 hk2-locator 2.6.1
org.glassfish.hk2 hk2-utils 2.6.1
org.glassfish.hk2 osgi-resource-locator 1.0.3
org.glassfish.hk2.external aopalliance-repackaged 2.6.1
org.glassfish.hk2.external jakarta.inject 2.6.1
org.glassfish.jersey.containers jersey-container-servlet 2,30
org.glassfish.jersey.containers jersey-container-servlet-core 2,30
org.glassfish.jersey.core jersey-client 2,30
org.glassfish.jersey.core jersey-common 2,30
org.glassfish.jersey.core jersey-server 2,30
org.glassfish.jersey.inject jersey-hk2 2,30
org.glassfish.jersey.media jersey-media-jaxb 2,30
org.hibernate.validator hibernate-validator 6.1.0.Final
org.javassist javassist 3.25.0-GA
org.jboss.logging jboss-logging 3.3.2.Final
org.jdbi jdbi 2.63.1
org.joda joda-convert 1.7
org.jodd jodd-core 3.5.2
org.json4s json4s-ast_2.12 3.7.0-M5
org.json4s json4s-core_2.12 3.7.0-M5
org.json4s json4s-jackson_2.12 3.7.0-M5
org.json4s json4s-scalap_2.12 3.7.0-M5
org.lz4 lz4-java 1.7.1
org.mariadb.jdbc mariadb-java-client 2.2.5
org.objenesis objenesis 2.5.1
org.postgresql postgresql 42.1.4
org.roaringbitmap RoaringBitmap 0.9.0
org.roaringbitmap shims 0.9.0
org.rocksdb rocksdbjni 6.2.2
org.rosuda.REngine REngine 2.1.0
org.scala-lang scala-compiler_2.12 2.12.10
org.scala-lang scala-library_2.12 2.12.10
org.scala-lang scala-reflect_2.12 2.12.10
org.scala-lang.modules scala-collection-compat_2.12 2.1.1
org.scala-lang.modules scala-parser-combinators_2.12 1.1.2
org.scala-lang.modules scala-xml_2.12 1.2.0
org.scala-sbt test-interface 1,0
org.scalacheck scalacheck_2.12 1.14.2
org.scalactic scalactic_2.12 3.0.8
org.scalanlp breeze-macros_2.12 1,0
org.scalanlp breeze_2.12 1,0
org.scalatest scalatest_2.12 3.0.8
org.slf4j jcl-over-slf4j 1.7.30
org.slf4j jul-to-slf4j 1.7.30
org.slf4j slf4j-api 1.7.30
org.slf4j slf4j-log4j12 1.7.30
org.spark-project.spark unused 1.0.0
org.springframework spring-core 4.1.4.RELEASE
org.springframework spring-test 4.1.4.RELEASE
org.threeten threeten-extra 1.5.0
org.tukaani xz 1.5
org.typelevel algebra_2.12 2.0.0-M2
org.typelevel cats-kernel_2.12 2.0.0-M4
org.typelevel machinist_2.12 0.6.8
org.typelevel macro-compat_2.12 1.1.1
org.typelevel spire-macros_2.12 0.17.0-M1
org.typelevel spire-platform_2.12 0.17.0-M1
org.typelevel spire-util_2.12 0.17.0-M1
org.typelevel spire_2.12 0.17.0-M1
org.wildfly.openssl wildfly-openssl 1.0.7.Final
org.xerial sqlite-jdbc 3.8.11.2
org.xerial.snappy snappy-java 1.1.8.2
org.yaml snakeyaml 1.24
oro oro 2.0.8
pl.edu.icm JLargeArrays 1.5
software.amazon.ion ion-java 1.0.2
stax stax-api 1.0.1
xmlenc xmlenc 0,52