Compartir a través de


Consultar un modelo de asociación (Analysis Services - Minería de datos)

Cuando se crea una consulta en un modelo de minería de datos, puede tratarse de una consulta de contenido, que proporciona detalles sobre las reglas y los conjuntos de elementos detectados durante el análisis, o una consulta de predicción, que utiliza las asociaciones detectadas en los datos para realizar predicciones. En un modelo de asociación, las predicciones se basan normalmente en reglas y se pueden utilizar para realizar recomendaciones, mientras que las consultas de contenido normalmente exploran la relación entre los conjuntos de elementos. También se pueden recuperar metadatos sobre el modelo.

En esta sección se explica cómo crear los tipos de consultas siguientes en modelos basados en el algoritmo de reglas de asociación de Microsoft.

  • Consultas de contenido

    Obtener metadatos del modelo usando DMX

    Obtener metadatos del conjunto de filas de esquema

    Recuperar una lista de conjuntos de elementos y productos

    Recuperar parámetros para el modelo

    Recuperar los 10 mejores conjuntos de elementos

  • Consultas de predicción

    Predecir elementos asociados

    Determinar la confianza por los conjuntos de elementos relacionados

Buscar información sobre el modelo

Todos los modelos de minería de datos exponen el contenido aprendido por el algoritmo de acuerdo con un esquema normalizado, denominado conjunto de filas de esquema del modelo de minería de datos. Puede crear consultas en el conjunto de filas de esquema del modelo de minería de datos utilizando instrucciones de Extensiones de minería de datos (DMX) o los procedimientos almacenados de Analysis Services. En SQL Server 2008, los conjuntos de filas de esquema se exponen como tablas del sistema, pudiéndose consultar mediante el uso de sintaxis como la de Transact-SQL.

Volver al principio

Ejemplo de consulta 1: obtener metadatos del modelo usando DMX

La consulta siguiente devuelve metadatos básicos sobre el modelo de asociación, Association, como el nombre del modelo, la base de datos en la que se encuentra almacenado y el número de nodos secundarios existentes en él. Esta consulta usa una consulta de contenido DMX para recuperar los metadatos del nodo primario del modelo:

SELECT MODEL_CATALOG, MODEL_NAME, NODE_CAPTION, 
NODE_SUPPORT, [CHILDREN_CARDINALITY], NODE_DESCRIPTION
FROM Association.CONTENT
WHERE NODE_TYPE = 1

[!NOTA]

El nombre de la columna CHILDREN_CARDINALITY debe ir entre corchetes para distinguirlo de la palabra clave reservada de MDX del mismo nombre.

Resultados del ejemplo:

MODEL_CATALOG

Association Test

MODEL_NAME

Association

NODE_CAPTION

Association Rules Model

NODE_SUPPORT

14879

CHILDREN_CARDINALITY

942

NODE_DESCRIPTION

Association Rules Model; ITEMSET_COUNT=679; RULE_COUNT=263; MIN_SUPPORT=14; MAX_SUPPORT=4334; MIN_ITEMSET_SIZE=0; MAX_ITEMSET_SIZE=3; MIN_PROBABILITY=0.400390625; MAX_PROBABILITY=1; MIN_LIFT=0.14309369632511; MAX_LIFT=1.95758227647523

Para obtener una definición de lo que significan estas columnas en un modelo de asociación, vea Contenido del modelo de minería de datos para los modelos de asociación (Analysis Services - Minería de datos).

Volver al principio

Consulta de ejemplo 2: obtener metadatos adicionales del conjunto de filas de esquema

Mediante una consulta al conjunto de filas de esquema de minería de datos, se puede obtener la misma información que a través de una consulta de contenido DMX. Sin embargo, el conjunto de filas de esquema proporciona algunas columnas adicionales, como la fecha en que se procesó el modelo por última vez, la estructura de minería de datos y el nombre de la columna utilizada como atributo de predicción.

SELECT MODEL_CATALOG, MODEL_NAME, SERVICE_NAME, PREDICTION_ENTITY, 
MINING_STRUCTURE, LAST_PROCESSED
FROM $system.DMSCHEMA_MINING_MODELS
WHERE MODEL_NAME = 'Association'

Resultados del ejemplo:

MODEL_CATALOG

AdventureWorks DW

MODEL_NAME

Association

SERVICE_NAME

Association Rules Model

PREDICTION_ENTITY

v Assoc Seq Line Items

MINING_STRUCTURE

Association

LAST_PROCESSED

9/29/2007 10:21:24 PM

Volver al principio

Consulta de ejemplo 3: recuperar los parámetros originales para el modelo

La consulta siguiente devuelve una única columna con detalles sobre la configuración de parámetros utilizada cuando se creó el modelo.

SELECT MINING_PARAMETERS 
from $system.DMSCHEMA_MINING_MODELS
WHERE MODEL_NAME = 'Association'

Resultados del ejemplo:

MAXIMUM_ITEMSET_COUNT=200000,MAXIMUM_ITEMSET_SIZE=3,MAXIMUM_SUPPORT=1,MINIMUM_SUPPORT=9.40923449156529E-04,MINIMUM_IMPORTANCE=-999999999,MINIMUM_ITEMSET_SIZE=0,MINIMUM_PROBABILITY=0.4

Buscar información sobre las reglas y los conjuntos de elementos

Los usos más comunes de un modelo de asociación son dos: detectar información sobre conjuntos de elementos frecuentes y extraer detalles sobre reglas y conjuntos de elementos concretos. Por ejemplo, puede que desee extraer una lista de reglas puntuadas como especialmente interesantes, o crear una lista de los conjuntos de elementos más comunes. Esta información se recupera utilizando una consulta de contenido DMX. También se puede examinar esta información utilizando el Visor de asociación de Microsoft.

Volver al principio

Consulta de ejemplo 4: recuperar una lista de conjuntos de elementos y productos

La consulta siguiente recupera todos los conjuntos de elementos junto con una tabla anidada que contiene la lista de productos incluidos en cada conjunto de elementos. La columna NODE_NAME contiene el identificador único del conjunto de elementos existente en el modelo, mientras que NODE_CAPTION proporciona una descripción de los elementos. En este ejemplo, se ha quitado la información de estructura jerárquica de la tabla anidada para que el conjunto de elementos que contenga dos productos genere dos filas en los resultados. Se puede omitir la palabra clave FLATTENED si el cliente admite datos jerárquicos.

SELECT FLATTENED NODE_NAME, NODE_CAPTION,
NODE_PROBABILITY, NODE_SUPPORT,
(SELECT ATTRIBUTE_NAME FROM NODE_DISTRIBUTION) as PurchasedProducts
FROM Association.CONTENT
WHERE NODE_TYPE = 7

Resultados del ejemplo:

NODE_NAME

37

NODE_CAPTION

Sport-100 = Existing

NODE_PROBABILITY

0.291283016331743

NODE_SUPPORT

4334

PURCHASEDPRODUCTS.ATTRIBUTE_NAME

v Assoc Seq Line Items(Sport-100)

Volver al principio

Consulta de ejemplo 5: devolver los 10 mejores conjuntos de elementos

En este ejemplo se muestra cómo utilizar algunas de las funciones de agrupación y ordenación que DMX proporciona de forma predeterminada. La consulta devuelve los 10 mejores conjuntos de elementos ordenados según el soporte para cada nodo. Observe que no necesita agrupar explícitamente los resultados, tal como haría en Transact-SQL; sin embargo, puede utilizar solo una función de agregado en cada consulta.

SELECT TOP 10 (NODE_SUPPORT),NODE_NAME, NODE_CAPTION
FROM Association.CONTENT
WHERE NODE_TYPE = 7

Resultados del ejemplo:

NODE_SUPPORT

4334

NODE_NAME

37

NODE_CAPTION

Sport-100 = Existing

Realizar predicciones utilizando el modelo

Un modelo de reglas de asociación se suele utilizar para generar recomendaciones, que se basan en las correlaciones detectadas en los conjuntos de elementos. Por tanto, cuando se crea una consulta de predicción basada en un modelo de reglas de asociación, normalmente se utilizan las reglas del modelo para realizar estimaciones basadas en nuevos datos. PredictAssociation (DMX) es la función que devuelve las recomendaciones y tiene varios argumentos que se pueden utilizar para personalizar los resultados de la consulta.

Otro ejemplo de dónde podrían resultar útiles las consultas en un modelo de asociación consiste en devolver la confianza para diversas reglas y conjuntos de elementos con objeto de poder comparar la efectividad de distintas estrategias de ventas cruzadas. En los ejemplos siguientes se muestra cómo crear tales consultas.

Volver al principio

Consulta de ejemplo 6: predecir elementos asociados

En este ejemplo se utiliza el modelo de asociación creado en el tutorial básico de minería de datos. Muestra cómo crear una consulta de predicción que indica qué productos se deben recomendar a un cliente que ha comprado un producto determinado. Este tipo de consulta, donde se deben proporcionar valores para el modelo en una instrucción SELECT…UNION, se denomina consulta singleton. Dado que la columna del modelo de predicción correspondiente a los nuevos valores es una tabla anidada, se debe utilizar una cláusula SELECT para asignar el nuevo valor a la columna de tabla anidada, [Model], y otra cláusula SELECT para asignar la columna de tabla anidada a la columna de nivel de caso, [v Assoc Seq Line Items]. Si agrega la palabra clave INCLUDE-STATISTICS a la consulta, podrá ver la probabilidad y el soporte para las recomendaciones.

SELECT PredictAssociation([Association].[vAssocSeqLineItems],INCLUDE_STATISTICS, 3)
FROM [Association]
NATURAL PREDICTION JOIN 
(SELECT
(SELECT 'Classic Vest' as [Model])
AS [v Assoc Seq Line Items])
AS t

Resultados del ejemplo:

Modelo

$SUPPORT

$PROBABILITY

$ADJUSTEDPROBABILITY

Sport-100

4334

0.291283

0.252696

Water Bottle

2866

0.19262

0.175205

Patch kit

2113

0.142012

0.132389

Volver al principio

Consulta de ejemplo 7: determinar la confianza por los conjuntos de elementos relacionados

Mientras que las reglas son útiles para generar recomendaciones, los conjuntos de elementos resultan más interesantes para realizar análisis más profundos de los patrones existentes en el conjunto de datos. Por ejemplo, si no quedó satisfecho con las recomendaciones devueltas por la consulta de ejemplo anterior, podría examinar otros conjuntos de elementos que contuviesen el Producto A para tener una idea más clara de si dicho producto es un accesorio que se compra con todo tipo de productos, o si se trata de un producto estrechamente relacionado con las compras de determinados productos. La manera más fácil de explorar estas relaciones es filtrando los conjuntos de elementos en el Visor de asociación de Microsoft; sin embargo, se puede recuperar la misma información con una consulta.

La consulta de ejemplo siguiente devuelve todos los conjuntos de elementos que contienen el elemento Water Bottle, incluido el elemento Water Bottle por sí solo.

SELECT TOP 100 FROM 
(
SELECT FLATTENED NODE_CAPTION, NODE_SUPPORT, 
(SELECT ATTRIBUTE_NAME from NODE_DISTRIBUTION
WHERE ATTRIBUTE_NAME = 'v Assoc Seq Line Items(Water Bottle)') as D
FROM Association.CONTENT
WHERE NODE_TYPE = 7
) AS Items
WHERE [D.ATTRIBUTE_NAME] <> NULL
ORDER BY NODE_SUPPORT DESC

Resultados del ejemplo:

NODE_CAPTION

NODE_SUPPORT

D.ATTRIBUTE_NAME

Water Bottle = Existing

2866

v Assoc Seq Line Items(Water Bottle)

Mountain Bottle Cage = Existing, Water Bottle = Existing

1136

v Assoc Seq Line Items(Water Bottle)

Road Bottle Cage = Existing, Water Bottle = Existing

1068

v Assoc Seq Line Items(Water Bottle)

Water Bottle = Existing, Sport-100 = Existing

734

v Assoc Seq Line Items(Water Bottle)

Cuando se crea una consulta que incluye una tabla anidada, la consulta no solo devuelve las filas de la tabla anidada que cumplen los criterios, sino también todas las filas externas o de la tabla de casos. Por consiguiente, en este ejemplo se agrega una cláusula WHERE para eliminar las filas de la tabla de casos que tengan un valor NULL para el nombre del atributo de destino.

Lista de funciones

Todos los algoritmos de Microsoft admiten un conjunto común de funciones. Sin embargo, el algoritmo de asociación de Microsoft admite las funciones adicionales que se incluyen en la tabla siguiente.

Historial de cambios

Contenido actualizado

Se han agregado vínculos de cada tema para facilitar la revisión de los ejemplos de consultas.