Requêtes de diagnostic utiles dans Azure Cosmos DB for PostgreSQL
S’APPLIQUE À : Azure Cosmos DB for PostgreSQL (avec l’extension de base de données Citus pour PostgreSQL)
Recherche du nœud contenant les données d’un locataire spécifique
Dans un cas d’utilisation multilocataire, nous pouvons déterminer le nœud Worker qui contient les lignes d’un locataire spécifique. Azure Cosmos DB for PostgreSQL regroupe les lignes des tables distribuées dans des partitions, puis place chaque partition sur un nœud Worker dans le cluster.
Supposons que les locataires de notre application sont des magasins et que nous souhaitons identifier le nœud Worker contenant les données pour ID de magasin=4. En d’autres termes, nous souhaitons déterminer l’emplacement de la partition contenant les lignes dont la colonne de distribution a la valeur 4 :
SELECT shardid, shardstate, shardlength, nodename, nodeport, placementid
FROM pg_dist_placement AS placement,
pg_dist_node AS node
WHERE placement.groupid = node.groupid
AND node.noderole = 'primary'
AND shardid = (
SELECT get_shard_id_for_distribution_column('stores', 4)
);
La sortie contient l’hôte et le port de la base de données Worker.
┌─────────┬────────────┬─────────────┬───────────┬──────────┬─────────────┐
│ shardid │ shardstate │ shardlength │ nodename │ nodeport │ placementid │
├─────────┼────────────┼─────────────┼───────────┼──────────┼─────────────┤
│ 102009 │ 1 │ 0 │ 10.0.0.16 │ 5432 │ 2 │
└─────────┴────────────┴─────────────┴───────────┴──────────┴─────────────┘
Recherche du nœud qui héberge un schéma distribué
Les schémas distribués sont automatiquement associés à des groupes de colocation individuels, de sorte que les tables créées dans ces schémas sont converties en tables distribuées colocalisées sans clé de partition. Vous pouvez trouver l’emplacement où réside un schéma distribué en joignant citus_shards
à citus_schemas
:
select schema_name, nodename, nodeport
from citus_shards
join citus_schemas cs
on cs.colocation_id = citus_shards.colocation_id
group by 1,2,3;
schema_name | nodename | nodeport
-------------+-----------+----------
a | localhost | 9701
b | localhost | 9702
with_data | localhost | 9702
Vous pouvez également interroger citus_shards
directement en effectuant un filtrage vers le type de table de schéma pour obtenir une liste détaillée de toutes les tables.
select * from citus_shards where citus_table_type = 'schema';
table_name | shardid | shard_name | citus_table_type | colocation_id | nodename | nodeport | shard_size | schema_name | colocation_id | schema_size | schema_owner
----------------+---------+-----------------------+------------------+---------------+-----------+----------+------------+-------------+---------------+-------------+--------------
a.cities | 102080 | a.cities_102080 | schema | 4 | localhost | 9701 | 8192 | a | 4 | 128 kB | citus
a.map_tags | 102145 | a.map_tags_102145 | schema | 4 | localhost | 9701 | 32768 | a | 4 | 128 kB | citus
a.measurement | 102047 | a.measurement_102047 | schema | 4 | localhost | 9701 | 0 | a | 4 | 128 kB | citus
a.my_table | 102179 | a.my_table_102179 | schema | 4 | localhost | 9701 | 16384 | a | 4 | 128 kB | citus
a.people | 102013 | a.people_102013 | schema | 4 | localhost | 9701 | 32768 | a | 4 | 128 kB | citus
a.test | 102008 | a.test_102008 | schema | 4 | localhost | 9701 | 8192 | a | 4 | 128 kB | citus
a.widgets | 102146 | a.widgets_102146 | schema | 4 | localhost | 9701 | 32768 | a | 4 | 128 kB | citus
b.test | 102009 | b.test_102009 | schema | 5 | localhost | 9702 | 8192 | b | 5 | 32 kB | citus
b.test_col | 102012 | b.test_col_102012 | schema | 5 | localhost | 9702 | 24576 | b | 5 | 32 kB | citus
with_data.test | 102180 | with_data.test_102180 | schema | 11 | localhost | 9702 | 647168 | with_data | 11 | 632 kB | citus
Recherche de la colonne de distribution d’une table
Chaque table distribuée a une « colonne de distribution ». (Pour plus d’informations, consultez Modélisation des données distribuées.) Il peut être important de savoir de quelle colonne il s’agit. Par exemple, lors de la jointure ou du filtrage de tables, vous pourriez voir des messages d’erreurs avec des indicateurs comme « ajouter un filtre à la colonne de distribution ».
Les tables pg_dist_*
sur le nœud coordinateur contiennent diverses métadonnées sur la base de données distribuée. En particulier, pg_dist_partition
contient des informations sur la colonne de distribution pour chaque table. Vous pouvez utiliser une fonction utilitaire pratique pour rechercher le nom de la colonne de distribution à partir des détails de bas niveau dans les métadonnées. Voici un exemple et sa sortie :
-- create example table
CREATE TABLE products (
store_id bigint,
product_id bigint,
name text,
price money,
CONSTRAINT products_pkey PRIMARY KEY (store_id, product_id)
);
-- pick store_id as distribution column
SELECT create_distributed_table('products', 'store_id');
-- get distribution column name for products table
SELECT column_to_column_name(logicalrelid, partkey) AS dist_col_name
FROM pg_dist_partition
WHERE logicalrelid='products'::regclass;
Exemple de sortie :
┌───────────────┐
│ dist_col_name │
├───────────────┤
│ store_id │
└───────────────┘
Détection des verrous
Cette requête s’exécutera sur tous les nœuds Worker et identifiera les verrous, la durée pendant laquelle ils ont été ouverts, et les requêtes incriminées :
SELECT run_command_on_workers($cmd$
SELECT array_agg(
blocked_statement || ' $ ' || cur_stmt_blocking_proc
|| ' $ ' || cnt::text || ' $ ' || age
)
FROM (
SELECT blocked_activity.query AS blocked_statement,
blocking_activity.query AS cur_stmt_blocking_proc,
count(*) AS cnt,
age(now(), min(blocked_activity.query_start)) AS "age"
FROM pg_catalog.pg_locks blocked_locks
JOIN pg_catalog.pg_stat_activity blocked_activity
ON blocked_activity.pid = blocked_locks.pid
JOIN pg_catalog.pg_locks blocking_locks
ON blocking_locks.locktype = blocked_locks.locktype
AND blocking_locks.DATABASE IS NOT DISTINCT FROM blocked_locks.DATABASE
AND blocking_locks.relation IS NOT DISTINCT FROM blocked_locks.relation
AND blocking_locks.page IS NOT DISTINCT FROM blocked_locks.page
AND blocking_locks.tuple IS NOT DISTINCT FROM blocked_locks.tuple
AND blocking_locks.virtualxid IS NOT DISTINCT FROM blocked_locks.virtualxid
AND blocking_locks.transactionid IS NOT DISTINCT FROM blocked_locks.transactionid
AND blocking_locks.classid IS NOT DISTINCT FROM blocked_locks.classid
AND blocking_locks.objid IS NOT DISTINCT FROM blocked_locks.objid
AND blocking_locks.objsubid IS NOT DISTINCT FROM blocked_locks.objsubid
AND blocking_locks.pid != blocked_locks.pid
JOIN pg_catalog.pg_stat_activity blocking_activity ON blocking_activity.pid = blocking_locks.pid
WHERE NOT blocked_locks.GRANTED
AND blocking_locks.GRANTED
GROUP BY blocked_activity.query,
blocking_activity.query
ORDER BY 4
) a
$cmd$);
Exemple de sortie :
┌───────────────────────────────────────────────────────────────────────────────────┐
│ run_command_on_workers │
├───────────────────────────────────────────────────────────────────────────────────┤
│ (10.0.0.16,5432,t,"") │
│ (10.0.0.20,5432,t,"{""update ads_102277 set name = 'new name' where id = 1; $ sel…│
│…ect * from ads_102277 where id = 1 for update; $ 1 $ 00:00:03.729519""}") │
└───────────────────────────────────────────────────────────────────────────────────┘
Interrogation de la taille de vos partitions
Cette requête vous indiquera la taille de chaque partition d’une table distribuée donnée, appelée my_distributed_table
:
SELECT *
FROM run_command_on_shards('my_distributed_table', $cmd$
SELECT json_build_object(
'shard_name', '%1$s',
'size', pg_size_pretty(pg_table_size('%1$s'))
);
$cmd$);
Exemple de sortie :
┌─────────┬─────────┬───────────────────────────────────────────────────────────────────────┐
│ shardid │ success │ result │
├─────────┼─────────┼───────────────────────────────────────────────────────────────────────┤
│ 102008 │ t │ {"shard_name" : "my_distributed_table_102008", "size" : "2416 kB"} │
│ 102009 │ t │ {"shard_name" : "my_distributed_table_102009", "size" : "3960 kB"} │
│ 102010 │ t │ {"shard_name" : "my_distributed_table_102010", "size" : "1624 kB"} │
│ 102011 │ t │ {"shard_name" : "my_distributed_table_102011", "size" : "4792 kB"} │
└─────────┴─────────┴───────────────────────────────────────────────────────────────────────┘
Interrogation de la taille de toutes les tables distribuées
Cette requête obtient une liste des tailles de chaque table distribuée, ainsi que la taille de leurs index.
SELECT
tablename,
pg_size_pretty(
citus_total_relation_size(tablename::text)
) AS total_size
FROM pg_tables pt
JOIN pg_dist_partition pp
ON pt.tablename = pp.logicalrelid::text
WHERE schemaname = 'public';
Exemple de sortie :
┌───────────────┬────────────┐
│ tablename │ total_size │
├───────────────┼────────────┤
│ github_users │ 39 MB │
│ github_events │ 98 MB │
└───────────────┴────────────┘
Notez qu’il existe d’autres fonctions Azure Cosmos DB for PostgreSQL pour l’interrogation de la taille des tables distribuées. Consultez Détermination de la taille d’une table.
Identification des index inutilisés
La requête suivante identifiera les index inutilisés sur les nœuds Worker pour une table distribuée donnée (my_distributed_table
)
SELECT *
FROM run_command_on_shards('my_distributed_table', $cmd$
SELECT array_agg(a) as infos
FROM (
SELECT (
schemaname || '.' || relname || '##' || indexrelname || '##'
|| pg_size_pretty(pg_relation_size(i.indexrelid))::text
|| '##' || idx_scan::text
) AS a
FROM pg_stat_user_indexes ui
JOIN pg_index i
ON ui.indexrelid = i.indexrelid
WHERE NOT indisunique
AND idx_scan < 50
AND pg_relation_size(relid) > 5 * 8192
AND (schemaname || '.' || relname)::regclass = '%s'::regclass
ORDER BY
pg_relation_size(i.indexrelid) / NULLIF(idx_scan, 0) DESC nulls first,
pg_relation_size(i.indexrelid) DESC
) sub
$cmd$);
Exemple de sortie :
┌─────────┬─────────┬───────────────────────────────────────────────────────────────────────┐
│ shardid │ success │ result │
├─────────┼─────────┼───────────────────────────────────────────────────────────────────────┤
│ 102008 │ t │ │
│ 102009 │ t │ {"public.my_distributed_table_102009##some_index_102009##28 MB##0"} │
│ 102010 │ t │ │
│ 102011 │ t │ │
└─────────┴─────────┴───────────────────────────────────────────────────────────────────────┘
Surveillance du nombre de connexions client
La requête suivante compte les connexions ouvertes sur le coordinateur et les regroupe par type.
SELECT state, count(*)
FROM pg_stat_activity
GROUP BY state;
Exemple de sortie :
┌────────┬───────┐
│ state │ count │
├────────┼───────┤
│ active │ 3 │
│ idle │ 3 │
│ ∅ │ 6 │
└────────┴───────┘
Affichage des requêtes système
Requêtes actives
La vue pg_stat_activity
indique les requêtes en cours d’exécution. Vous pouvez filtrer pour rechercher celles activement exécutées, ainsi que l’ID de processus de leur serveur principal :
SELECT pid, query, state
FROM pg_stat_activity
WHERE state != 'idle';
Pourquoi les requêtes sont-elles en attente ?
Nous pouvons également interroger pour voir les raisons les plus courantes pour lesquelles des requêtes non inactives sont en attente. Pour une explication des raisons, consultez la documentation PostgreSQL.
SELECT wait_event || ':' || wait_event_type AS type, count(*) AS number_of_occurences
FROM pg_stat_activity
WHERE state != 'idle'
GROUP BY wait_event, wait_event_type
ORDER BY number_of_occurences DESC;
Exemple de sortie lors de l’exécution simultanée de pg_sleep
dans une requête distincte :
┌─────────────────┬──────────────────────┐
│ type │ number_of_occurences │
├─────────────────┼──────────────────────┤
│ ∅ │ 1 │
│ PgSleep:Timeout │ 1 │
└─────────────────┴──────────────────────┘
Taux d’accès à l’index
Cette requête vous fournira le taux d’accès à l’index sur tous les nœuds. Le taux d’accès à l’index est utile pour déterminer la fréquence à laquelle les index sont utilisés lors de l’interrogation. Une valeur de 95% ou supérieure est idéale.
-- on coordinator
SELECT 100 * (sum(idx_blks_hit) - sum(idx_blks_read)) / sum(idx_blks_hit) AS index_hit_rate
FROM pg_statio_user_indexes;
-- on workers
SELECT nodename, result as index_hit_rate
FROM run_command_on_workers($cmd$
SELECT 100 * (sum(idx_blks_hit) - sum(idx_blks_read)) / sum(idx_blks_hit) AS index_hit_rate
FROM pg_statio_user_indexes;
$cmd$);
Exemple de sortie :
┌───────────┬────────────────┐
│ nodename │ index_hit_rate │
├───────────┼────────────────┤
│ 10.0.0.16 │ 96.0 │
│ 10.0.0.20 │ 98.0 │
└───────────┴────────────────┘
Taux d'accès au cache
La plupart des applications accèdent généralement à une petite fraction de leurs données totales à la fois. PostgreSQL conserve les données fréquemment utilisées en mémoire pour éviter les lectures lentes à partir du disque. Vous pouvez consulter les statistiques à ce sujet dans l’affichage pg_statio_user_tables.
Une mesure importante est le pourcentage de données provenant du cache en mémoire par rapport au disque dans votre charge de travail :
-- on coordinator
SELECT
sum(heap_blks_read) AS heap_read,
sum(heap_blks_hit) AS heap_hit,
100 * sum(heap_blks_hit) / (sum(heap_blks_hit) + sum(heap_blks_read)) AS cache_hit_rate
FROM
pg_statio_user_tables;
-- on workers
SELECT nodename, result as cache_hit_rate
FROM run_command_on_workers($cmd$
SELECT
100 * sum(heap_blks_hit) / (sum(heap_blks_hit) + sum(heap_blks_read)) AS cache_hit_rate
FROM
pg_statio_user_tables;
$cmd$);
Exemple de sortie :
┌───────────┬──────────┬─────────────────────┐
│ heap_read │ heap_hit │ cache_hit_rate │
├───────────┼──────────┼─────────────────────┤
│ 1 │ 132 │ 99.2481203007518796 │
└───────────┴──────────┴─────────────────────┘
Si vous vous retrouvez avec un ratio nettement inférieur à 99 %, vous souhaiterez probablement envisager d’augmenter le cache disponible pour votre base de données.
Étapes suivantes
- En savoir plus sur les autres tables système utiles pour les diagnostics