Surveiller les coûts d’activité avec les tables système
Important
Cette table système est en préversion publique. Pour accéder à la table, le schéma doit être activé dans votre catalogue system
. Pour plus d’informations, consultez Activer les schémas de table système.
Cet article vous donne des exemples d’utilisation des tables système pour surveiller le coût des activités dans votre compte.
Ces requêtes calculent uniquement les coûts des travaux exécutés sur le calcul des travaux et le calcul serverless. Les travaux exécutés sur des entrepôts SQL et le calcul à usage général ne sont pas facturés en tant que travaux et sont donc exclus de l’attribution des coûts.
Remarque
Ces requêtes ne retournent pas d’enregistrements à partir d’espaces de travail qui sont en dehors de la région cloud de votre espace de travail actuel. Pour surveiller les coûts d’activité des espaces de travail en dehors de votre région actuelle, exécutez ces requêtes dans un espace de travail déployé dans cette région.
Tableau de bord d’observabilité des coûts
Pour vous aider à démarrer la surveillance de vos coûts d’activité, téléchargez le tableau de bord suivant d’observabilité des coûts à partir de GitHub. Consultez tableau de bord d’observabilité des coûts et de l’intégrité des activités.
Une fois le fichier JSON téléchargé, importez le tableau de bord dans votre espace de travail. Pour obtenir des instructions sur l’importation de tableaux de bord, consultez Importer un fichier de tableau de bord.
Activités ayant la plus forte variation de dépenses sur 7 à 14 jours précédents
Cette requête identifie quelles activités ont eu la plus forte augmentation de coûts dans la liste des dépenses au cours des 2 dernières semaines.
with job_run_timeline_with_cost as (
SELECT
t1.*,
t1.usage_metadata.job_id as job_id,
t1.identity_metadata.run_as as run_as,
t1.usage_quantity * list_prices.pricing.default AS list_cost
FROM system.billing.usage t1
INNER JOIN system.billing.list_prices list_prices
ON
t1.cloud = list_prices.cloud AND
t1.sku_name = list_prices.sku_name AND
t1.usage_start_time >= list_prices.price_start_time AND
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is NULL)
WHERE
t1.sku_name LIKE '%JOBS%' AND
t1.usage_metadata.job_id IS NOT NULL AND
t1.usage_metadata.job_run_id IS NOT NULL AND
t1.usage_date >= CURRENT_DATE() - INTERVAL 14 DAY
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
t2.name
,t1.workspace_id
,t1.job_id
,t1.sku_name
,t1.run_as
,Last7DaySpend
,Last14DaySpend
,last7DaySpend - last14DaySpend as Last7DayGrowth
,try_divide( (last7DaySpend - last14DaySpend) , last14DaySpend) * 100 AS Last7DayGrowthPct
FROM
(
SELECT
workspace_id,
job_id,
run_as,
sku_name,
SUM(list_cost) AS spend
,SUM(CASE WHEN usage_end_time BETWEEN date_add(current_date(), -8) AND date_add(current_date(), -1) THEN list_cost ELSE 0 END) AS Last7DaySpend
,SUM(CASE WHEN usage_end_time BETWEEN date_add(current_date(), -15) AND date_add(current_date(), -8) THEN list_cost ELSE 0 END) AS Last14DaySpend
FROM job_run_timeline_with_cost
GROUP BY ALL
) t1
LEFT JOIN most_recent_jobs t2 USING (workspace_id, job_id)
ORDER BY
Last7DayGrowth DESC
LIMIT 100
Activités les plus coûteuses des 30 derniers jours
Cette requête identifie les activités avec les dépenses les plus élevées des 30 derniers jours.
with list_cost_per_job as (
SELECT
t1.workspace_id,
t1.usage_metadata.job_id,
COUNT(DISTINCT t1.usage_metadata.job_run_id) as runs,
SUM(t1.usage_quantity * list_prices.pricing.default) as list_cost,
first(identity_metadata.run_as, true) as run_as,
first(t1.custom_tags, true) as custom_tags,
MAX(t1.usage_end_time) as last_seen_date
FROM system.billing.usage t1
INNER JOIN system.billing.list_prices list_prices on
t1.cloud = list_prices.cloud and
t1.sku_name = list_prices.sku_name and
t1.usage_start_time >= list_prices.price_start_time and
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is null)
WHERE
t1.sku_name LIKE '%JOBS%'
AND t1.usage_metadata.job_id IS NOT NULL
AND t1.usage_date >= CURRENT_DATE() - INTERVAL 30 DAY
GROUP BY ALL
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
t2.name,
t1.job_id,
t1.workspace_id,
t1.runs,
t1.run_as,
SUM(list_cost) as list_cost,
t1.last_seen_date
FROM list_cost_per_job t1
LEFT JOIN most_recent_jobs t2 USING (workspace_id, job_id)
GROUP BY ALL
ORDER BY list_cost DESC
L’activité la plus coûteuse exécutée depuis les 30 derniers jours
Cette requête identifie les exécutions d’activités avec les dépenses les plus élevées des 30 derniers jours.
with list_cost_per_job_run as (
SELECT
t1.workspace_id,
t1.usage_metadata.job_id,
t1.usage_metadata.job_run_id as run_id,
SUM(t1.usage_quantity * list_prices.pricing.default) as list_cost,
first(identity_metadata.run_as, true) as run_as,
first(t1.custom_tags, true) as custom_tags,
MAX(t1.usage_end_time) as last_seen_date
FROM system.billing.usage t1
INNER JOIN system.billing.list_prices list_prices on
t1.cloud = list_prices.cloud and
t1.sku_name = list_prices.sku_name and
t1.usage_start_time >= list_prices.price_start_time and
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is null)
WHERE
t1.sku_name LIKE '%JOBS%'
AND t1.usage_metadata.job_id IS NOT NULL
AND t1.usage_metadata.job_run_id IS NOT NULL
AND t1.usage_date >= CURRENT_DATE() - INTERVAL 30 DAY
GROUP BY ALL
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
t1.workspace_id,
t2.name,
t1.job_id,
t1.run_id,
t1.run_as,
SUM(list_cost) as list_cost,
t1.last_seen_date
FROM list_cost_per_job_run t1
LEFT JOIN most_recent_jobs t2 USING (workspace_id, job_id)
GROUP BY ALL
ORDER BY list_cost DESC
Activités avec des défaillances fréquentes et coûteuses
Cette requête retourne des informations à propos des activités avec un nombre élevé d’exécutions ayant échoué au cours des 30 derniers jours. Vous pouvez afficher le nombre d’exécutions, le nombre d’échecs, le ratio de réussite et le coût par liste des exécutions ayant échoué.
with job_run_timeline_with_cost as (
SELECT
t1.*,
t1.identity_metadata.run_as as run_as,
t2.job_id,
t2.run_id,
t2.result_state,
t1.usage_quantity * list_prices.pricing.default as list_cost
FROM system.billing.usage t1
INNER JOIN system.lakeflow.job_run_timeline t2
ON
t1.workspace_id=t2.workspace_id
AND t1.usage_metadata.job_id = t2.job_id
AND t1.usage_metadata.job_run_id = t2.run_id
AND t1.usage_start_time >= date_trunc("Hour", t2.period_start_time)
AND t1.usage_start_time < date_trunc("Hour", t2.period_end_time) + INTERVAL 1 HOUR
INNER JOIN system.billing.list_prices list_prices on
t1.cloud = list_prices.cloud and
t1.sku_name = list_prices.sku_name and
t1.usage_start_time >= list_prices.price_start_time and
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is null)
WHERE
t1.sku_name LIKE '%JOBS%' AND
t1.usage_date >= CURRENT_DATE() - INTERVAL 30 DAYS
),
cumulative_run_status_cost as (
SELECT
workspace_id,
job_id,
run_id,
run_as,
result_state,
usage_end_time,
SUM(list_cost) OVER (ORDER BY workspace_id, job_id, run_id, usage_end_time ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_cost
FROM job_run_timeline_with_cost
ORDER BY workspace_id, job_id, run_id, usage_end_time
),
cost_per_status as (
SELECT
workspace_id,
job_id,
run_id,
run_as,
result_state,
usage_end_time,
cumulative_cost - COALESCE(LAG(cumulative_cost) OVER (ORDER BY workspace_id, job_id, run_id, usage_end_time), 0) AS result_state_cost
FROM cumulative_run_status_cost
WHERE result_state IS NOT NULL
ORDER BY workspace_id, job_id, run_id, usage_end_time),
cost_per_status_agg as (
SELECT
workspace_id,
job_id,
FIRST(run_as, TRUE) as run_as,
SUM(result_state_cost) as list_cost
FROM cost_per_status
WHERE
result_state IN ('ERROR', 'FAILED', 'TIMED_OUT')
GROUP BY ALL
),
terminal_statues as (
SELECT
workspace_id,
job_id,
CASE WHEN result_state IN ('ERROR', 'FAILED', 'TIMED_OUT') THEN 1 ELSE 0 END as is_failure,
period_end_time as last_seen_date
FROM system.lakeflow.job_run_timeline
WHERE
result_state IS NOT NULL AND
period_end_time >= CURRENT_DATE() - INTERVAL 30 DAYS
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
first(t2.name) as name,
t1.workspace_id,
t1.job_id,
COUNT(*) as runs,
t3.run_as,
SUM(is_failure) as failures,
(1 - COALESCE(try_divide(SUM(is_failure), COUNT(*)), 0)) * 100 as success_ratio,
first(t3.list_cost) as failure_list_cost,
MAX(t1.last_seen_date) as last_seen_date
FROM terminal_statues t1
LEFT JOIN most_recent_jobs t2 USING (workspace_id, job_id)
LEFT JOIN cost_per_status_agg t3 USING (workspace_id, job_id)
GROUP BY ALL
ORDER BY failures DESC
Activités avec le nombre de nouvelles tentatives le plus élevé
Cette requête retourne des informations sur les activités avec des réparations fréquentes au cours des 30 derniers jours, notamment le nombre de réparations, le coût des exécutions de réparation et la durée cumulée des exécutions de réparation.
with job_run_timeline_with_cost as (
SELECT
t1.*,
t2.job_id,
t2.run_id,
t1.identity_metadata.run_as as run_as,
t2.result_state,
t1.usage_quantity * list_prices.pricing.default as list_cost
FROM system.billing.usage t1
INNER JOIN system.lakeflow.job_run_timeline t2
ON
t1.workspace_id=t2.workspace_id
AND t1.usage_metadata.job_id = t2.job_id
AND t1.usage_metadata.job_run_id = t2.run_id
AND t1.usage_start_time >= date_trunc("Hour", t2.period_start_time)
AND t1.usage_start_time < date_trunc("Hour", t2.period_end_time) + INTERVAL 1 HOUR
INNER JOIN system.billing.list_prices list_prices on
t1.cloud = list_prices.cloud and
t1.sku_name = list_prices.sku_name and
t1.usage_start_time >= list_prices.price_start_time and
(t1.usage_end_time <= list_prices.price_end_time or list_prices.price_end_time is null)
WHERE
t1.sku_name LIKE '%JOBS%' AND
t1.usage_date >= CURRENT_DATE() - INTERVAL 30 DAYS
),
cumulative_run_status_cost as (
SELECT
workspace_id,
job_id,
run_id,
run_as,
result_state,
usage_end_time,
SUM(list_cost) OVER (ORDER BY workspace_id, job_id, run_id, usage_end_time ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) AS cumulative_cost
FROM job_run_timeline_with_cost
ORDER BY workspace_id, job_id, run_id, usage_end_time
),
cost_per_status as (
SELECT
workspace_id,
job_id,
run_id,
run_as,
result_state,
usage_end_time,
cumulative_cost - COALESCE(LAG(cumulative_cost) OVER (ORDER BY workspace_id, job_id, run_id, usage_end_time), 0) AS result_state_cost
FROM cumulative_run_status_cost
WHERE result_state IS NOT NULL
ORDER BY workspace_id, job_id, run_id, usage_end_time),
cost_per_unsuccesful_status_agg as (
SELECT
workspace_id,
job_id,
run_id,
first(run_as, TRUE) as run_as,
SUM(result_state_cost) as list_cost
FROM cost_per_status
WHERE
result_state != "SUCCEEDED"
GROUP BY ALL
),
repaired_runs as (
SELECT
workspace_id, job_id, run_id, COUNT(*) as cnt
FROM system.lakeflow.job_run_timeline
WHERE result_state IS NOT NULL
GROUP BY ALL
HAVING cnt > 1
),
successful_repairs as (
SELECT t1.workspace_id, t1.job_id, t1.run_id, MAX(t1.period_end_time) as period_end_time
FROM system.lakeflow.job_run_timeline t1
JOIN repaired_runs t2
ON t1.workspace_id=t2.workspace_id AND t1.job_id=t2.job_id AND t1.run_id=t2.run_id
WHERE t1.result_state="SUCCEEDED"
GROUP BY ALL
),
combined_repairs as (
SELECT
t1.*,
t2.period_end_time,
t1.cnt as repairs
FROM repaired_runs t1
LEFT JOIN successful_repairs t2 USING (workspace_id, job_id, run_id)
),
most_recent_jobs as (
SELECT
*,
ROW_NUMBER() OVER(PARTITION BY workspace_id, job_id ORDER BY change_time DESC) as rn
FROM
system.lakeflow.jobs QUALIFY rn=1
)
SELECT
last(t3.name) as name,
t1.workspace_id,
t1.job_id,
t1.run_id,
first(t4.run_as, TRUE) as run_as,
first(t1.repairs) - 1 as repairs,
first(t4.list_cost) as repair_list_cost,
CASE WHEN t1.period_end_time IS NOT NULL THEN CAST(t1.period_end_time - MIN(t2.period_end_time) as LONG) ELSE NULL END AS repair_time_seconds
FROM combined_repairs t1
JOIN system.lakeflow.job_run_timeline t2 USING (workspace_id, job_id, run_id)
LEFT JOIN most_recent_jobs t3 USING (workspace_id, job_id)
LEFT JOIN cost_per_unsuccesful_status_agg t4 USING (workspace_id, job_id, run_id)
WHERE
t2.result_state IS NOT NULL
GROUP BY t1.workspace_id, t1.job_id, t1.run_id, t1.period_end_time
ORDER BY repairs DESC