Databricks Runtime 10.2 pour ML (EoS)
Remarque
La prise en charge de cette version databricks Runtime a pris fin. Pour connaître la date de fin de support, consultez l’historique de fin de support. Pour toutes les versions prises en charge de Databricks Runtime, consultez Notes de publication sur les versions et la compatibilité de Databricks Runtime.
Databricks a publié cette version en décembre 2021.
Databricks Runtime 10.2 pour Machine Learning fournit un environnement prêt à l’emploi pour Machine Learning et la science des données basé sur Databricks Runtime 10.2 (EoS). Databricks Runtime ML contient de nombreuses bibliothèques populaires de Machine Learning, notamment TensorFlow, PyTorch et XGBoost. Databricks Runtime ML comprend AutoML, un outil permettant d’effectuer l’apprentissage automatique des pipelines Machine Learning. Databricks Runtime ML prend également en charge l'apprentissage profond distribué à l'aide d'Horovod.
Pour plus d’informations, notamment les instructions relatives à la création d’un groupement Databricks Runtime ML, consultez IA et apprentissage automatique sur Databricks.
Améliorations et nouvelles fonctionnalités
Databricks Runtime 10.2 ML s’appuie sur Databricks Runtime 10.2. Pour plus d'informations sur les nouveautés de Databricks Runtime 10.2, notamment Apache Spark MLlib et SparkR, consultez les notes de publication de Databricks Runtime 10.2 (EoS).
Databricks Autologging (Préversion publique)
La journalisation Databricks est désormais en version préliminaire publique dans toutes les régions. Databricks Autologging est une solution sans code qui assure le suivi automatique des expériences pour les sessions de formation d'apprentissage automatique sur Azure Databricks. Avec Databricks Autologging, les paramètres des modèles, les métriques, les fichiers et les informations de lignage sont automatiquement capturés lorsque vous formez des modèles à partir d'une variété de bibliothèques d'apprentissage automatique populaires. Les sessions de formation sont enregistrées en tant qu’exécutions de suivi MLflow. Les fichiers de modèle sont également suivis afin que vous puissiez facilement les enregistrer dans le registre de modèles MLflow et les déployer pour un scoring en temps réel avec MLflow Model Serving.
Pour plus d’informations sur Databricks Autologging, consultez Databricks Autologging.
Améliorations apportées à AutoML
Les améliorations suivantes ont été apportées à AutoML.
- AutoML ignore les colonnes qui n’ont qu’une seule valeur.
- Pour les problèmes de classification et de régression, la colonne de temps utilisée pour fractionner le jeu de données en jeux d’apprentissage, de validation et de test par ordre chronologique peut désormais être de type chaîne. Précédemment, le datage et le nombre d’entiers étaient pris en charge. Pour obtenir plus de détails, consultez Fractionner des données en jeux de formation, de validation et de test.
Améliorations apportées à Databricks Feature Store
Les améliorations suivantes ont été apportées au Databricks Feature Store.
Interface simplifiée FeatureStoreClient
L’interface FeatureStoreClient a été simplifiée.
FeatureStoreClient.create_feature_table()
a été déprécié. Utilisez plutôtFeatureStoreClient.create_table()
.FeatureStoreClient.get_feature_table()
a été déprécié. Utilisez plutôtFeatureStoreClient.get_table()
.- Tous les arguments à d’autres que
FeatureStoreClient.publish_table()
etname
doivent être passés en tant qu’arguments deonline_store
mot clé.
Publier uniquement les colonnes sélectionnées dans les magasins en ligne
Le magasin de fonctionnalités Databricks prend désormais en charge la publication de colonnes sélectionnées uniquement dans un magasin en ligne. Pour plus d’informations, consultez publier les fonctionnalités sélectionnées dans un magasin en ligne.
Changements importants apportés à l’environnement Python de Databricks Runtime ML
L' intégration de suivi MLflow automatisée pour Apache Spark MLlib, qui était dépréciée dans Databricks Runtime 10,1 ML, est désormais désactivée par défaut dans Databricks Runtime 10.2 ML. il a été remplacé par PySpark de MLflow ML l’intégration de la journalisation, qui est activée par défaut avec la journalisation autoDatabricks. La journalisation automatique enregistre des informations supplémentaires au-delà du suivi MLflow automatisé pour les MLlib capturés, y compris les paramètres, les métriques et les artefacts associés au meilleur modèle.
Mise à niveau des packages Python
- databricks-cli 0.14.3 => 0.16.2
- keras 2.6.0 => 2.7.0
- lightgbm 3.3.0 => 3.3.1
- mlflow 1.21.0 = > 1.22.0
- plotly 5.3.0 => 5.3.1
- shap 0.39.0 => 0.40.0
- spacy 3.1.3 => 3.2.0
- tensorboard 2.6.0 => 2.7.0
- tensorflow 2.6.0 -> 2.7.0
- torch 1.9.1 => 1.10.0
- torchvision 0.10.1 => 0.11.1
- transformers 4.11.3 => 4.12.3
- xgboost 1.4.2 => 1.5.0
Environnement du système
L’environnement système de Databricks Runtime 10.2 ML diffère de Databricks Runtime 10.2 comme suit :
- DBUtils : Databricks Runtime ML n’inclut pas L’Utilitaire de bibliothèque (dbutils.library) (hérité).
Utilisez les commandes
%pip
à la place. Consultez Bibliothèques Python délimitées à un notebook. - Pour les clusters GPU, Databricks Runtime ML inclut les bibliothèques GPU NVIDIA suivantes :
- CUDA 11.0
- cuDNN 8.0.5.39
- NCCL 2.10.3
- TensorRT 7.2.2
Bibliothèques
Les sections suivantes répertorient les bibliothèques incluses dans Databricks Runtime ML 10.2 qui diffèrent de celles incluses dans Databricks Runtime 10.2.
Dans cette section :
- Bibliothèques de niveau supérieur
- Bibliothèques Python
- Bibliothèques R
- Bibliothèques Java et Scala (cluster Scala 2.12)
Bibliothèques de niveau supérieur
Databricks Runtime 10.2 ML comprend les bibliothèquesde niveau supérieur suivantes :
- GraphFrames
- Horovod et HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Bibliothèques Python
Databricks Runtime 10.2 ML utilise Virtualenv pour la gestion des packages Python et comprend de nombreux packages ML populaires.
En plus des packages spécifiés dans les sections suivantes, Databricks Runtime 10.2 ML comprend également les packages suivants :
- hyperopt 0.2.7.db1
- sparkdl 2.2.0-db5
- feature_store 0.3.6
- automl 1.5.0
Bibliothèques Python sur les clusters UC
Bibliothèque | Version | Bibliothèque | Version | Bibliothèque | Version |
---|---|---|---|---|---|
absl-py | 0.11.0 | Antergos Linux | 2015.10 (ISO-Rolling) | appdirs | 1.4.4 |
argon2-cffi | 20.1.0 | astor | 0.8.1 | astunparse | 1.6.3 |
async-generator | 1,10 | attrs | 20.3.0 | backcall | 0.2.0 |
bcrypt | 3.2.0 | bidict | 0.21.4 | bleach | 3.3.0 |
blis | 0.7.4 | boto3 | 1.16.7 | botocore | 1.19.7 |
cachetools | 4.2.4 | catalogue | 2.0.6 | certifi | 2020.12.5 |
cffi | 1.14.5 | chardet | 4.0.0 | click | 7.1.2 |
cloudpickle | 1.6.0 | cmdstanpy | 0.9.68 | configparser | 5.0.1 |
convertdate | 2.3.2 | chiffrement | 3.4.7 | cycler | 0.10.0 |
cymem | 2.0.5 | Cython | 0.29.23 | databricks-automl-runtime | 0.2.4 |
databricks-cli | 0.16.2 | dbus-python | 1.2.16 | decorator | 5.0.6 |
defusedxml | 0.7.1 | dill | 0.3.2 | diskcache | 5.2.1 |
distlib | 0.3.3 | distro-info | 0.23ubuntu1 | entrypoints | 0.3 |
ephem | 4.1.1 | facets-overview | 1.0.0 | fasttext | 0.9.2 |
filelock | 3.0.12 | Flask | 1.1.2 | flatbuffers | 2 |
fsspec | 0.9.0 | future | 0.18.2 | gast | 0.4.0 |
gitdb | 4.0.7 | GitPython | 3.1.12 | google-auth | 1.22.1 |
google-auth-oauthlib | 0.4.2 | google-pasta | 0.2.0 | grpcio | 1.39.0 |
gunicorn | 20.0.4 | gviz-api | 1.10.0 | h5py | 3.1.0 |
hijri-converter | 2.2.2 | holidays | 0.11.3.1 | horovod | 0.23.0 |
htmlmin | 0.1.12 | huggingface-hub | 0.1.2 | idna | 2.10 |
ImageHash | 4.2.1 | imbalanced-learn | 0.8.1 | importlib-metadata | 3.10.0 |
ipykernel | 5.3.4 | ipython | 7.22.0 | ipython-genutils | 0.2.0 |
ipywidgets | 7.6.3 | isodate | 0.6.0 | itsdangerous | 1.1.0 |
jedi | 0.17.2 | Jinja2 | 2.11.3 | jmespath | 0.10.0 |
joblib | 1.0.1 | joblibspark | 0.3.0 | jsonschema | 3.2.0 |
jupyter-client | 6.1.12 | jupyter-core | 4.7.1 | jupyterlab-pygments | 0.1.2 |
jupyterlab-widgets | 1.0.0 | keras | 2.7.0 | Keras-Preprocessing | 1.1.2 |
kiwisolver | 1.3.1 | koalas | 1.8.2 | korean-lunar-calendar | 0.2.1 |
langcodes | 3.3.0 | libclang | 12.0.0 | lightgbm | 3.3.1 |
llvmlite | 0.37.0 | LunarCalendar | 0.0.9 | Mako | 1.1.3 |
Markdown | 3.3.3 | MarkupSafe | 2.0.1 | matplotlib | 3.4.2 |
missingno | 0.5.0 | mistune | 0.8.4 | mleap | 0.18.1 |
mlflow-skinny | 1.22.0 | multimethod | 1.6 | murmurhash | 1.0.5 |
nbclient | 0.5.3 | nbconvert | 6.0.7 | nbformat | 5.1.3 |
nest-asyncio | 1.5.1 | networkx | 2.5 | nltk | 3.6.1 |
notebook | 6.3.0 | numba | 0.54.1 | numpy | 1.19.2 |
oauthlib | 3.1.0 | opt-einsum | 3.3.0 | empaquetage | 21,3 |
pandas | 1.2.4 | pandas-profiling | 3.1.0 | pandocfilters | 1.4.3 |
paramiko | 2.7.2 | parso | 0.7.0 | pathy | 0.6.0 |
patsy | 0.5.1 | petastorm | 0.11.3 | pexpect | 4.8.0 |
phik | 0.12.0 | pickleshare | 0.7.5 | Pillow | 8.2.0 |
pip | 21.0.1 | plotly | 5.3.1 | preshed | 3.0.5 |
prometheus-client | 0.10.1 | prompt-toolkit | 3.0.17 | prophet | 1.0.1 |
protobuf | 3.17.2 | psutil | 5.8.0 | psycopg2 | 2.8.5 |
ptyprocess | 0.7.0 | pyarrow | 4.0.0 | pyasn1 | 0.4.8 |
pyasn1-modules | 0.2.8 | pybind11 | 2.8.1 | pycparser | 2.20 |
pydantic | 1.8.2 | Pygments | 2.8.1 | PyGObject | 3.36.0 |
PyMeeus | 0.5.11 | PyNaCl | 1.4.0 | pyodbc | 4.0.30 |
pyparsing | 2.4.7 | pyrsistent | 0.17.3 | pystan | 2.19.1.1 |
python-apt | 2.0.0+ubuntu0.20.4.6 | python-dateutil | 2.8.1 | python-editor | 1.0.4 |
python-engineio | 4.3.0 | python-socketio | 5.4.1 | pytz | 2020.5 |
PyWavelets | 1.1.1 | PyYAML | 5.4.1 | pyzmq | 20.0.0 |
regex | 2021.4.4 | requêtes | 2.25.1 | requests-oauthlib | 1.3.0 |
requests-unixsocket | 0.2.0 | rsa | 4.7.2 | s3transfer | 0.3.7 |
sacremoses | 0.0.46 | scikit-learn | 0.24.1 | scipy | 1.6.2 |
seaborn | 0.11.1 | Send2Trash | 1.5.0 | setuptools | 52.0.0 |
setuptools-git | 1.2 | shap | 0.40.0 | simplejson | 3.17.2 |
six | 1.15.0 | segment | 0.0.7 | smart-open | 5.2.0 |
smmap | 3.0.5 | spacy | 3.2.0 | spacy-legacy | 3.0.8 |
spacy-loggers | 1.0.1 | spark-tensorflow-distributor | 1.0.0 | sqlparse | 0.4.1 |
srsly | 2.4.1 | ssh-import-id | 5.10 | statsmodels | 0.12.2 |
tabulate | 0.8.7 | tangled-up-in-unicode | 0.1.0 | tenacity | 6.2.0 |
tensorboard | 2.7.0 | tensorboard-data-server | 0.6.1 | tensorboard-plugin-profile | 2.5.0 |
tensorboard-plugin-wit | 1.8.0 | tensorflow-cpu | 2.7.0 | tensorflow-estimator | 2.7.0 |
tensorflow-io-gcs-filesystem | 0.22.0 | termcolor | 1.1.0 | terminado | 0.9.4 |
testpath | 0.4.4 | thinc | 8.0.12 | threadpoolctl | 2.1.0 |
générateurs de jetons | 0.10.3 | torch | 1.10.0+cpu | torchvision | 0.11.1+cpu |
tornado | 6.1 | tqdm | 4.59.0 | traitlets | 5.0.5 |
transformateurs | 4.12.3 | typer | 0.3.2 | typing-extensions | 3.7.4.3 |
ujson | 4.0.2 | unattended-upgrades | 0.1 | urllib3 | 1.25.11 |
virtualenv | 20.4.1 | visions | 0.7.4 | wasabi | 0.8.2 |
wcwidth | 0.2.5 | webencodings | 0.5.1 | websocket-client | 0.57.0 |
Werkzeug | 1.0.1 | wheel | 0.36.2 | widgetsnbextension | 3.5.1 |
wrapt | 1.12.1 | xgboost | 1.5.0 | zipp | 3.4.1 |
Bibliothèques Python sur les clusters GPU
Bibliothèque | Version | Bibliothèque | Version | Bibliothèque | Version |
---|---|---|---|---|---|
absl-py | 0.11.0 | Antergos Linux | 2015.10 (ISO-Rolling) | appdirs | 1.4.4 |
argon2-cffi | 20.1.0 | astor | 0.8.1 | astunparse | 1.6.3 |
async-generator | 1,10 | attrs | 20.3.0 | backcall | 0.2.0 |
bcrypt | 3.2.0 | bidict | 0.21.4 | bleach | 3.3.0 |
blis | 0.7.4 | boto3 | 1.16.7 | botocore | 1.19.7 |
cachetools | 4.2.4 | catalogue | 2.0.6 | certifi | 2020.12.5 |
cffi | 1.14.5 | chardet | 4.0.0 | click | 7.1.2 |
cloudpickle | 1.6.0 | cmdstanpy | 0.9.68 | configparser | 5.0.1 |
convertdate | 2.3.2 | chiffrement | 3.4.7 | cycler | 0.10.0 |
cymem | 2.0.5 | Cython | 0.29.23 | databricks-automl-runtime | 0.2.4 |
databricks-cli | 0.16.2 | dbus-python | 1.2.16 | decorator | 5.0.6 |
defusedxml | 0.7.1 | dill | 0.3.2 | diskcache | 5.2.1 |
distlib | 0.3.3 | distro-info | 0.23ubuntu1 | entrypoints | 0.3 |
ephem | 4.1.1 | facets-overview | 1.0.0 | fasttext | 0.9.2 |
filelock | 3.0.12 | Flask | 1.1.2 | flatbuffers | 2 |
fsspec | 0.9.0 | future | 0.18.2 | gast | 0.4.0 |
gitdb | 4.0.7 | GitPython | 3.1.12 | google-auth | 1.22.1 |
google-auth-oauthlib | 0.4.2 | google-pasta | 0.2.0 | grpcio | 1.39.0 |
gunicorn | 20.0.4 | gviz-api | 1.10.0 | h5py | 3.1.0 |
hijri-converter | 2.2.2 | holidays | 0.11.3.1 | horovod | 0.23.0 |
htmlmin | 0.1.12 | huggingface-hub | 0.1.2 | idna | 2.10 |
ImageHash | 4.2.1 | imbalanced-learn | 0.8.1 | importlib-metadata | 3.10.0 |
ipykernel | 5.3.4 | ipython | 7.22.0 | ipython-genutils | 0.2.0 |
ipywidgets | 7.6.3 | isodate | 0.6.0 | itsdangerous | 1.1.0 |
jedi | 0.17.2 | Jinja2 | 2.11.3 | jmespath | 0.10.0 |
joblib | 1.0.1 | joblibspark | 0.3.0 | jsonschema | 3.2.0 |
jupyter-client | 6.1.12 | jupyter-core | 4.7.1 | jupyterlab-pygments | 0.1.2 |
jupyterlab-widgets | 1.0.0 | keras | 2.7.0 | Keras-Preprocessing | 1.1.2 |
kiwisolver | 1.3.1 | koalas | 1.8.2 | korean-lunar-calendar | 0.2.1 |
langcodes | 3.3.0 | libclang | 12.0.0 | lightgbm | 3.3.1 |
llvmlite | 0.37.0 | LunarCalendar | 0.0.9 | Mako | 1.1.3 |
Markdown | 3.3.3 | MarkupSafe | 2.0.1 | matplotlib | 3.4.2 |
missingno | 0.5.0 | mistune | 0.8.4 | mleap | 0.18.1 |
mlflow-skinny | 1.22.0 | multimethod | 1.6 | murmurhash | 1.0.5 |
nbclient | 0.5.3 | nbconvert | 6.0.7 | nbformat | 5.1.3 |
nest-asyncio | 1.5.1 | networkx | 2.5 | nltk | 3.6.1 |
notebook | 6.3.0 | numba | 0.54.1 | numpy | 1.19.2 |
oauthlib | 3.1.0 | opt-einsum | 3.3.0 | empaquetage | 21,3 |
pandas | 1.2.4 | pandas-profiling | 3.1.0 | pandocfilters | 1.4.3 |
paramiko | 2.7.2 | parso | 0.7.0 | pathy | 0.6.0 |
patsy | 0.5.1 | petastorm | 0.11.3 | pexpect | 4.8.0 |
phik | 0.12.0 | pickleshare | 0.7.5 | Pillow | 8.2.0 |
pip | 21.0.1 | plotly | 5.3.1 | preshed | 3.0.5 |
prompt-toolkit | 3.0.17 | prophet | 1.0.1 | protobuf | 3.17.2 |
psutil | 5.8.0 | psycopg2 | 2.8.5 | ptyprocess | 0.7.0 |
pyarrow | 4.0.0 | pyasn1 | 0.4.8 | pyasn1-modules | 0.2.8 |
pybind11 | 2.8.1 | pycparser | 2.20 | pydantic | 1.8.2 |
Pygments | 2.8.1 | PyGObject | 3.36.0 | PyMeeus | 0.5.11 |
PyNaCl | 1.4.0 | pyodbc | 4.0.30 | pyparsing | 2.4.7 |
pyrsistent | 0.17.3 | pystan | 2.19.1.1 | python-apt | 2.0.0+ubuntu0.20.4.6 |
python-dateutil | 2.8.1 | python-editor | 1.0.4 | python-engineio | 4.3.0 |
python-socketio | 5.4.1 | pytz | 2020.5 | PyWavelets | 1.1.1 |
PyYAML | 5.4.1 | pyzmq | 20.0.0 | regex | 2021.4.4 |
requêtes | 2.25.1 | requests-oauthlib | 1.3.0 | requests-unixsocket | 0.2.0 |
rsa | 4.7.2 | s3transfer | 0.3.7 | sacremoses | 0.0.46 |
scikit-learn | 0.24.1 | scipy | 1.6.2 | seaborn | 0.11.1 |
Send2Trash | 1.5.0 | setuptools | 52.0.0 | setuptools-git | 1.2 |
shap | 0.40.0 | simplejson | 3.17.2 | six | 1.15.0 |
segment | 0.0.7 | smart-open | 5.2.0 | smmap | 3.0.5 |
spacy | 3.2.0 | spacy-legacy | 3.0.8 | spacy-loggers | 1.0.1 |
spark-tensorflow-distributor | 1.0.0 | sqlparse | 0.4.1 | srsly | 2.4.1 |
ssh-import-id | 5.10 | statsmodels | 0.12.2 | tabulate | 0.8.7 |
tangled-up-in-unicode | 0.1.0 | tenacity | 6.2.0 | tensorboard | 2.7.0 |
tensorboard-data-server | 0.6.1 | tensorboard-plugin-profile | 2.5.0 | tensorboard-plugin-wit | 1.8.0 |
tensorflow | 2.7.0 | tensorflow-estimator | 2.7.0 | tensorflow-io-gcs-filesystem | 0.22.0 |
termcolor | 1.1.0 | terminado | 0.9.4 | testpath | 0.4.4 |
thinc | 8.0.12 | threadpoolctl | 2.1.0 | générateurs de jetons | 0.10.3 |
torch | 1.10.0+cu111 | torchvision | 0.11.1+cu111 | tornado | 6.1 |
tqdm | 4.59.0 | traitlets | 5.0.5 | transformateurs | 4.12.3 |
typer | 0.3.2 | typing-extensions | 3.7.4.3 | ujson | 4.0.2 |
unattended-upgrades | 0.1 | urllib3 | 1.25.11 | virtualenv | 20.4.1 |
visions | 0.7.4 | wasabi | 0.8.2 | wcwidth | 0.2.5 |
webencodings | 0.5.1 | websocket-client | 0.57.0 | Werkzeug | 1.0.1 |
wheel | 0.36.2 | widgetsnbextension | 3.5.1 | wrapt | 1.12.1 |
xgboost | 1.5.0 | zipp | 3.4.1 |
Packages Spark contenant des modules Python
Package Spark | Module Python | Version |
---|---|---|
graphframes | graphframes | 0.8.2-db1-spark3.2 |
Bibliothèques R
Les bibliothèques R sont identiques aux bibliothèques R dans Databricks Runtime 10.2.
Bibliothèques Java et Scala (cluster Scala 2.12)
En plus des bibliothèques Java et Scala dans Databricks Runtime 10.2, Databricks Runtime 10.2 ML contient les fichiers jar suivants :
Clusters UC
ID de groupe | ID d’artefact | Version |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.18.1-23eb1ef |
ml.dmlc | xgboost4j-spark_2.12 | 1.5.1 |
ml.dmlc | xgboost4j_2.12 | 1.5.1 |
org.graphframes | graphframes_2.12 | 0.8.2-db1-spark3.2 |
org.mlflow | mlflow-client | 1.22.0 |
org.mlflow | mlflow-spark | 1.22.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |
Clusters GPU
ID de groupe | ID d’artefact | Version |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.18.1-23eb1ef |
ml.dmlc | xgboost4j-spark_2.12 | 1.5.1 |
ml.dmlc | xgboost4j_2.12 | 1.5.1 |
org.graphframes | graphframes_2.12 | 0.8.2-db1-spark3.2 |
org.mlflow | mlflow-client | 1.22.0 |
org.mlflow | mlflow-spark | 1.22.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |