Databricks Runtime 8.3 (EoS)
Remarque
La prise en charge de cette version databricks Runtime a pris fin. Pour connaître la date de fin de support, consultez l’historique de fin de support. Pour toutes les versions prises en charge de Databricks Runtime, consultez Notes de publication sur les versions et la compatibilité de Databricks Runtime.
Les notes de publication suivantes fournissent des informations sur Databricks Runtime 8.3 et Databricks Runtime 8.3 Photon, avec Apache Spark 3.1.1. Databricks a publié cette version en juin 2021. Photon est en préversion publique.
Améliorations et nouvelles fonctionnalités
- Colonnes générées dans les tables Delta (préversion publique)
- Fonctionnalités et améliorations d’Auto Loader
- Créer des tables Delta avec de nouvelles API programmatiques (préversion publique)
- Calcul correct de la taille des tables Delta dans SQL
ANALYZE
- Mesures détaillées des performances de RocksDB lors de l’utilisation de RocksDBStateStore
- Écritures optimisées automatiquement
- Activer les jointures compartiments si un seul côté de jointure est compartimenté
- Sécurité améliorée lors de la définition des fonctions définies par l’utilisateur Spark (préversion publique)
- Réduction du nombre de demandes au registre de schémas pour les requêtes avec
from_avro
- Résultats multiples dans R avec ListResults (version préversion publique)
Colonnes générées dans les tables Delta (préversion publique)
Delta Lake prend désormais en charge les colonnes générées qui sont un type spécial de colonnes dont les valeurs sont générées automatiquement en fonction d’une fonction définie par l’utilisateur sur d’autres colonnes de la table Delta. Vous pouvez utiliser la plupart des fonctions SQL intégrées pour générer les valeurs de ces colonnes générées. Par exemple, vous pouvez générer automatiquement une colonne de date (pour le partitionnement de la table par date) à partir de la colonne timestamp ; les écritures dans la table ne doivent spécifier que les données de la colonne timestamp. Vous pouvez créer des tables Delta avec des colonnes générées à l’aide des API SQL, Scala, Java ou Python.
Pour plus d’informations, consultez les Colonnes générées par Delta Lake.
Fonctionnalités et améliorations d’Auto Loader
- Inférence de schéma pour les fichiers CSV dans Auto Loader
- Amélioration du temps de démarrage pour les flux Auto Loader
- Affichage plus rapide des répertoires dans Auto Loader
- Réduction de la charge de stockage pour les points de contrôle de contrôle Auto Loader
- Auto Loader comprend le chemin d’accès du fichier dans la colonne de données de secours lorsqu’il est disponible
- Auto Loader prend en charge les renommages de fichiers dans Azure Data Lake Storage Gen2 en mode de notification de fichier
Inférence de schéma pour les fichiers CSV dans Auto Loader
Auto Loader prend désormais en charge l’inférence de schéma et l’évolution des fichiers CSV. Auto Loader fournit les fonctionnalités suivantes en plus de l’analyseur CSV existant dans Apache Spark :
- Fusion de schéma : Auto Loader peut ingérer des fichiers CSV ayant un schéma différent (nombre de colonnes différent, ordre de tri des colonnes) entre les fichiers.
- Colonne de données de récupération : vous pouvez utiliser la colonne de données de récupération pour récupérer des données inattendues qui peuvent apparaître dans vos fichiers CSV. Cela comprend les données qui ne peuvent pas être analysées dans le type de données attendu, les colonnes qui ont une casse différente ou les valeurs NULL dans l’en-tête, ou des colonnes supplémentaires qui ne faisaient pas partie du schéma attendu.
Pour plus d’informations, consultez Configurer l’inférence et de l’évolution de schéma dans le Chargeur automatique.
Amélioration du temps de démarrage pour les flux Auto Loader
Les flux Auto Loader effectuent désormais le renvoi initial du flux de façon asynchrone au démarrage pour la première fois, ce qui entraîne un temps de démarrage beaucoup plus rapide pour le flux. Cela peut vous permettre d’effectuer une itération rapide sur votre code avec des données de production, en particulier lorsque vous devez ingérer des données à partir de répertoires qui contiennent des millions ou des milliards de fichiers.
En outre, le temps d’amorçage des flux de données redémarrés est également amélioré, car nous avons mis en parallèle le téléchargement et le chargement des fichiers RocksDB qu’Auto Loader utilise pour fournir une sémantique exacte.
Affichage plus rapide des répertoires dans Auto Loader
Nous avons amélioré l’efficacité de la liste de répertoires dans Auto Loader. Un effet secondaire de cette amélioration des performances est que le flux peut émettre davantage de demandes de liste vers le système de stockage lorsqu’il n’y a aucune nouvelle donnée à traiter, ce qui peut entraîner une augmentation des frais de demande de liste. Comme meilleure pratique, Databricks recommande de définir un intervalle de déclenchement raisonnable pour les pipelines de flux de production. Consultez Considérations relatives à la production pour flux structuré.
Réduction de la charge de stockage pour les points de contrôle de contrôle Auto Loader
Les flux Auto Loader nettoient désormais automatiquement les fichiers obsolètes dans le répertoire de points de contrôle de façon asynchrone pour empêcher la taille du répertoire des points de contrôle de croître indéfiniment et réduire les coûts de stockage.
Auto Loader comprend le chemin d’accès du fichier dans la colonne de données de récupération lorsqu’il est disponible
La colonne de données de récupération fournit automatiquement le chemin d’accès aux données de secours, le cas échéant, dans une colonne nommée _file_ path
. Cela peut vous aider à identifier la cause racine des problèmes de qualité des données. La colonne n’est pas incluse si le schéma de données contient une colonne appelée _file_path
. Vous pouvez utiliser la configuration spark.databricks.sql.rescuedDataColumn.filePath.name
de SQL pour renommer la colonne si nécessaire.
Auto Loader prend en charge les renommages de fichiers dans Azure Data Lake Storage Gen2 en mode de notification de fichier
Auto Loader prend désormais en charge les événements BlobRenamed pour Azure Data Lake Storage Gen2 lors de l’exécution en mode notification de fichier. Pour traiter les fichiers qui sont téléchargés vers un conteneur d’Azure Data Lake Storage Gen2 par le biais d’une opération de changement de nom avec des notifications de fichier, démarrez un nouveau flux avec le chargeur automatique à l’aide de Databricks Runtime 8.3. Pour garantir qu’un fichier est traité une seule fois, assurez-vous que le répertoire source à partir duquel le fichier est renommé n’est pas surveillé par Auto Loader.
Créer des tables Delta avec de nouvelles API programmatiques (préversion publique)
Vous pouvez maintenant créer des tables Delta programmatiques (à l’aide de Scala, Java et Python) sans utiliser les API DataFrame. Les nouvelles API DeltaTableBuilder
et DeltaColumnBuilder
vous permettent de spécifier tous les détails de la table que vous pouvez indiquer à l’aide de SQL CREATE TABLE
.
Pour plus d'informations, consultez la page Créer une table.
Calcul correct de la taille des tables Delta dans SQL ANALYZE
La logique d’analyse existante calcule de manière incorrecte la taille de la table pour les tables Delta et met à jour le catalogue avec une taille incorrecte. Le correctif consiste à obtenir la taille d’une table Delta à partir du journal Delta.
Mesures détaillées des performances de RocksDB lors de l’utilisation de RocksDBStateStore
Si vous avez configuré votre requête de flux structuré pour utiliser RocksDB comme magasin d’état, vous pouvez désormais obtenir une meilleure visibilité des performances de RocksDB, avec des mesures détaillées sur les latences d’extraction/placement, les latences de compactage, les correspondances dans le cache, etc. Ces métriques sont disponibles via les API StreamingQueryProgress
et StreamingQueryListener
pour la surveillance d’une requête de flux.
Pour plus d’informations, consultez Configurer le magasin d’état RocksDB sur Azure Databricks.
Écritures optimisées automatiquement
Les écritures optimisées sur les tables Delta partitionnées sont désormais automatiquement activées pour les requêtes Update et Delete contenant des sous-requêtes.
Activer les jointures compartiments si un seul côté de jointure est compartimenté
Une nouvelle configuration spark.databricks.sql.minBucketsForBucketedJoin
active une jointure de compartiments si un seul côté de jointure est compartimenté et que le nombre de compartiments n’est pas inférieur à cette valeur de configuration. Par défaut, cette valeur de configuration est la même que le numéro de partition aléatoire par défaut (200).
Sécurité améliorée lors de la définition des fonctions définies par l’utilisateur Spark (préversion publique)
Les fonctions current_user
et is_member
ne d’informations utilisateur peuvent plus être remplacées par des fonctions temporaires, notamment Python spark.udf.register
ou SQL create or replace temp function
.
Réduction du nombre de demandes au registre de schémas pour les requêtes avec from_avro
Les requêtes avec from_avro
la prise en charge du registre de schémas ne génèrent plus autant de requêtes au service de registre de schémas, ce qui permet de réduire le coût opérationnel.
Résultats multiples dans R avec ListResults (version préversion publique)
Les notebooks Databricks R prennent désormais en charge plusieurs résultats dans chaque cellule. Auparavant, un seul résultat a été rendu pour chaque cellule de notebook. Actuellement, les résultats d’une cellule unique dans les notebooks R s’affichent dans l’ordre suivant :
- URL RShiny
- Tracé
- Sorties displayHTML
- Tables
- stdout
Mises à niveau de la bibliothèque
- Bibliothèque Python mise à niveau :
- koalas mise à niveau de 1.7.0 vers 1.8.0.
- pandas mise à niveau de 1.1.3 vers 1.1.5.
- s3transfer mise à niveau de 0.3.4 vers 0.3.6.
- Mise à niveau de la bibliothèque R :
- SparkR mise à niveau de 3.1.1 vers 3.1.2.
- Bibliothèque Java mise à niveau :
- mariadb-Java-client mise à niveau de 2.1.2 vers 2.2.5.
- parquet-column mise à niveau de 1.10.1-databricks6 vers 1.10.1-databricks9
- parquet-common mise à niveau de 1.10.1-databricks6 vers 1.10.1-databricks9
- parquet-enconding mise à niveau de 1.10.1-databricks6 vers 1.10.1-databricks9
- parquet-hadoop mise à niveau de 1.10.1-databricks6 vers 1.10.1-databricks9
- parquet-jackson mise à niveau de 1.10.1-databricks6 vers 1.10.1-databricks9
Apache Spark
Databricks Runtime 8.3 comprend Apache Spark 3.1.1. Cette version comprend l’ensemble des correctifs et améliorations Spark figurant dans Databricks Runtime 8.2 (EoS) ainsi que les correctifs de bogues et améliorations supplémentaires suivants apportés à Spark :
- [SPARK-34614][SQL] Mode ANSI : Le cast d’une valeur Chaîne en Booléenne déclenche une exception en cas d’erreur d’analyse
- [SPARK-34246] [FOLLOWUP] Modifier la définition de « findTightestCommonT...
- [SPARK-35213] [SQL] Conserver l’ordre correct des structs imbriqués dans les opérations withField chaînées
- [SPARK-35096] [SQL] SchemaPruning doit respecter la configuration spark.sql.caseSensitive
- [SPARK-35227] [BUILD] Mise à jour du programme de résolution pour spark-packages dans SparkSubmit
- [SPARK-35224] [SQL] Résolution du débordement de la mémoire tampon dans
MutableProjectionSuite
- [SPARK-34245][CORE] Vérifier que le maître supprime les exécuteurs qui n’ont pas réussi à envoyer l’état terminé
- [SPARK-34856][SQL] Mode ANSI : Autoriser le cast de types complexes en type de chaîne
- [SPARK-34946] [SQL] Bloquer la sous-requête scalaire corrélée non prise en charge dans l’agrégat
- [SPARK-35014] Corriger le modèle PhysicalAggregation pour ne pas réécrire les expressions pliables
- [SPARK-34769] [SQL] AnsiTypeCoercion : retourner le plus proche...
Environnement du système
- Système d’exploitation : Ubuntu 18.04.5 LTS
- Java : Zulu 8.52.0.23-CA-linux64 (build 1.8.0_282-b08)
- Scala : 2.12.10
- Python : 3.8.8
- R : R version 4.0.4 (15/02/2021)
- Delta Lake 1.0.0
Bibliothèques Python installées
Bibliothèque | Version | Bibliothèque | Version | Bibliothèque | Version |
---|---|---|---|---|---|
appdirs | 1.4.4 | asn1crypto | 1.4.0 | backcall | 0.2.0 |
boto3 | 1.16.7 | botocore | 1.19.7 | brotlipy | 0.7.0 |
certifi | 2020.12.5 | cffi | 1.14.3 | chardet | 3.0.4 |
chiffrement | 3.1.1 | cycler | 0.10.0 | Cython | 0.29.21 |
decorator | 4.4.2 | distlib | 0.3.1 | docutils | 0.15.2 |
entrypoints | 0.3 | facets-overview | 1.0.0 | filelock | 3.0.12 |
idna | 2.10 | ipykernel | 5.3.4 | ipython | 7.19.0 |
ipython-genutils | 0.2.0 | jedi | 0.17.2 | jmespath | 0.10.0 |
joblib | 0.17.0 | jupyter-client | 6.1.7 | jupyter-core | 4.6.3 |
kiwisolver | 1.3.0 | koalas | 1.8.0 | matplotlib | 3.2.2 |
numpy | 1.19.2 | pandas | 1.1.5 | parso | 0.7.0 |
patsy | 0.5.1 | pexpect | 4.8.0 | pickleshare | 0.7.5 |
pip | 20.2.4 | plotly | 4.14.3 | prompt-toolkit | 3.0.8 |
protobuf | 3.17.0 | psycopg2 | 2.8.5 | ptyprocess | 0.6.0 |
pyarrow | 1.0.1 | pycparser | 2.20 | Pygments | 2.7.2 |
pyOpenSSL | 19.1.0 | pyparsing | 2.4.7 | PySocks | 1.7.1 |
python-dateutil | 2.8.1 | pytz | 2020.5 | pyzmq | 19.0.2 |
requêtes | 2.24.0 | retrying | 1.3.3 | s3transfer | 0.3.6 |
scikit-learn | 0.23.2 | scipy | 1.5.2 | seaborn | 0.10.0 |
setuptools | 50.3.1 | six | 1.15.0 | statsmodels | 0.12.0 |
threadpoolctl | 2.1.0 | tornado | 6.0.4 | traitlets | 5.0.5 |
urllib3 | 1.25.11 | virtualenv | 20.2.1 | wcwidth | 0.2.5 |
wheel | 0.35.1 |
Bibliothèques R installées
Les bibliothèques R sont installées à partir de l’instantané Microsoft CRAN du 02/11/2020.
Bibliothèque | Version | Bibliothèque | Version | Bibliothèque | Version |
---|---|---|---|---|---|
askpass | 1.1 | assertthat | 0.2.1 | backports | 1.2.1 |
base | 4.0.4 | base64enc | 0.1-3 | BH | 1.72.0-3 |
bit | 4.0.4 | bit64 | 4.0.5 | objet BLOB | 1.2.1 |
boot | 1.3-27 | brew | 1.0-6 | brio | 1.1.0 |
broom | 0.7.2 | callr | 3.5.1 | caret | 6.0-86 |
cellranger | 1.1.0 | chron | 2.3-56 | class | 7.3-18 |
cli | 2.2.0 | clipr | 0.7.1 | cluster | 2.1.1 |
codetools | 0.2-18 | colorspace | 2.0-0 | commonmark | 1.7 |
compiler | 4.0.4 | config | 0.3 | covr | 3.5.1 |
cpp11 | 0.2.4 | crayon | 1.3.4 | credentials | 1.3.0 |
crosstalk | 1.1.0.1 | curl | 4.3 | data.table | 1.13.4 |
jeux de données | 4.0.4 | DBI | 1.1.0 | dbplyr | 2.0.0 |
desc | 1.2.0 | devtools | 2.3.2 | diffobj | 0.3.2 |
digest | 0.6.27 | dplyr | 1.0.2 | DT | 0.16 |
ellipsis | 0.3.1 | evaluate | 0.14 | fansi | 0.4.1 |
farver | 2.0.3 | fastmap | 1.0.1 | forcats | 0.5.0 |
foreach | 1.5.1 | foreign | 0.8-81 | forge | 0.2.0 |
fs | 1.5.0 | future | 1.21.0 | generics | 0.1.0 |
gert | 1.0.2 | ggplot2 | 3.3.2 | gh | 1.2.0 |
gitcreds | 0.1.1 | glmnet | 4.0-2 | globals | 0.14.0 |
glue | 1.4.2 | gower | 0.2.2 | graphics | 4.0.4 |
grDevices | 4.0.4 | grid | 4.0.4 | gridExtra | 2.3 |
gsubfn | 0.7 | gtable | 0.3.0 | haven | 2.3.1 |
highr | 0,8 | hms | 0.5.3 | htmltools | 0.5.0 |
htmlwidgets | 1.5.3 | httpuv | 1.5.4 | httr | 1.4.2 |
hwriter | 1.3.2 | hwriterPlus | 1.0-3 | ini | 0.3.1 |
ipred | 0.9-9 | isoband | 0.2.3 | iterators | 1.0.13 |
jsonlite | 1.7.2 | KernSmooth | 2.23-18 | knitr | 1.30 |
labeling | 0.4.2 | later | 1.1.0.1 | lattice | 0.20-41 |
lava | 1.6.8.1 | lazyeval | 0.2.2 | cycle de vie | 0.2.0 |
listenv | 0.8.0 | lubridate | 1.7.9.2 | magrittr | 2.0.1 |
markdown | 1.1 | MASS | 7.3-53.1 | Matrice | 1.3-2 |
memoise | 1.1.0 | methods | 4.0.4 | mgcv | 1.8-33 |
mime | 0.9 | ModelMetrics | 1.2.2.2 | modelr | 0.1.8 |
munsell | 0.5.0 | nlme | 3.1-152 | nnet | 7.3-15 |
numDeriv | 2016.8-1.1 | openssl | 1.4.3 | parallel | 4.0.4 |
parallelly | 1.22.0 | pillar | 1.4.7 | pkgbuild | 1.1.0 |
pkgconfig | 2.0.3 | pkgload | 1.1.0 | plogr | 0.2.0 |
plyr | 1.8.6 | praise | 1.0.0 | prettyunits | 1.1.1 |
pROC | 1.16.2 | processx | 3.4.5 | prodlim | 2019.11.13 |
progress | 1.2.2 | promises | 1.1.1 | proto | 1.0.0 |
ps | 1.5.0 | purrr | 0.3.4 | r2d3 | 0.2.3 |
R6 | 2.5.0 | randomForest | 4.6-14 | rappdirs | 0.3.1 |
rcmdcheck | 1.3.3 | RColorBrewer | 1.1-2 | Rcpp | 1.0.5 |
readr | 1.4.0 | readxl | 1.3.1 | recipes | 0.1.15 |
rematch | 1.0.1 | rematch2 | 2.1.2 | remotes | 2.2.0 |
reprex | 0.3.0 | reshape2 | 1.4.4 | rex | 1.2.0 |
rlang | 0.4.9 | rmarkdown | 2.6 | RODBC | 1.3-17 |
roxygen2 | 7.1.1 | rpart | 4.1-15 | rprojroot | 2.0.2 |
Rserve | 1.8-7 | RSQLite | 2.2.1 | rstudioapi | 0,13 |
rversions | 2.0.2 | rvest | 0.3.6 | scales | 1.1.1 |
selectr | 0.4-2 | sessioninfo | 1.1.1 | shape | 1.4.5 |
shiny | 1.5.0 | sourcetools | 0.1.7 | sparklyr | 1.5.2 |
SparkR | 3.1.2 | spatial | 7.3-11 | splines | 4.0.4 |
sqldf | 0.4-11 | SQUAREM | 2020.5 | stats | 4.0.4 |
stats4 | 4.0.4 | stringi | 1.5.3 | stringr | 1.4.0 |
survival | 3.2-7 | sys | 3.4 | tcltk | 4.0.4 |
TeachingDemos | 2,10 | testthat | 3.0.0 | tibble | 3.0.4 |
tidyr | 1.1.2 | tidyselect | 1.1.0 | tidyverse | 1.3.0 |
timeDate | 3043.102 | tinytex | 0,28 | tools | 4.0.4 |
usethis | 2.0.0 | utf8 | 1.1.4 | utils | 4.0.4 |
uuid | 0.1-4 | vctrs | 0.3.5 | viridisLite | 0.3.0 |
waldo | 0.2.3 | whisker | 0,4 | withr | 2.3.0 |
xfun | 0.19 | xml2 | 1.3.2 | xopen | 1.0.0 |
xtable | 1.8-4 | yaml | 2.2.1 | zip | 2.1.1 |
Bibliothèques Java et Scala installées (version de cluster Scala 2.12)
ID de groupe | ID d’artefact | Version |
---|---|---|
antlr | antlr | 2.7.7 |
com.amazonaws | amazon-kinesis-client | 1.12.0 |
com.amazonaws | aws-java-sdk-autoscaling | 1.11.655 |
com.amazonaws | aws-java-sdk-cloudformation | 1.11.655 |
com.amazonaws | aws-java-sdk-cloudfront | 1.11.655 |
com.amazonaws | aws-java-sdk-cloudhsm | 1.11.655 |
com.amazonaws | aws-java-sdk-cloudsearch | 1.11.655 |
com.amazonaws | aws-java-sdk-cloudtrail | 1.11.655 |
com.amazonaws | aws-java-sdk-cloudwatch | 1.11.655 |
com.amazonaws | aws-java-sdk-cloudwatchmetrics | 1.11.655 |
com.amazonaws | aws-java-sdk-codedeploy | 1.11.655 |
com.amazonaws | aws-java-sdk-cognitoidentity | 1.11.655 |
com.amazonaws | aws-java-sdk-cognitosync | 1.11.655 |
com.amazonaws | aws-java-sdk-config | 1.11.655 |
com.amazonaws | aws-java-sdk-core | 1.11.655 |
com.amazonaws | aws-java-sdk-datapipeline | 1.11.655 |
com.amazonaws | aws-java-sdk-directconnect | 1.11.655 |
com.amazonaws | aws-java-sdk-directory | 1.11.655 |
com.amazonaws | aws-java-sdk-dynamodb | 1.11.655 |
com.amazonaws | aws-java-sdk-ec2 | 1.11.655 |
com.amazonaws | aws-java-sdk-ecs | 1.11.655 |
com.amazonaws | aws-java-sdk-efs | 1.11.655 |
com.amazonaws | aws-java-sdk-elasticache | 1.11.655 |
com.amazonaws | aws-java-sdk-elasticbeanstalk | 1.11.655 |
com.amazonaws | aws-java-sdk-elasticloadbalancing | 1.11.655 |
com.amazonaws | aws-java-sdk-elastictranscoder | 1.11.655 |
com.amazonaws | aws-java-sdk-emr | 1.11.655 |
com.amazonaws | aws-java-sdk-glacier | 1.11.655 |
com.amazonaws | aws-java-sdk-iam | 1.11.655 |
com.amazonaws | aws-java-sdk-importexport | 1.11.655 |
com.amazonaws | aws-java-sdk-kinesis | 1.11.655 |
com.amazonaws | aws-java-sdk-kms | 1.11.655 |
com.amazonaws | aws-java-sdk-lambda | 1.11.655 |
com.amazonaws | aws-java-sdk-logs | 1.11.655 |
com.amazonaws | aws-java-sdk-machinelearning | 1.11.655 |
com.amazonaws | aws-java-sdk-opsworks | 1.11.655 |
com.amazonaws | aws-java-sdk-rds | 1.11.655 |
com.amazonaws | aws-java-sdk-redshift | 1.11.655 |
com.amazonaws | aws-java-sdk-route53 | 1.11.655 |
com.amazonaws | aws-java-sdk-s3 | 1.11.655 |
com.amazonaws | aws-java-sdk-ses | 1.11.655 |
com.amazonaws | aws-java-sdk-simpledb | 1.11.655 |
com.amazonaws | aws-java-sdk-simpleworkflow | 1.11.655 |
com.amazonaws | aws-java-sdk-sns | 1.11.655 |
com.amazonaws | aws-java-sdk-sqs | 1.11.655 |
com.amazonaws | aws-java-sdk-ssm | 1.11.655 |
com.amazonaws | aws-java-sdk-storagegateway | 1.11.655 |
com.amazonaws | aws-java-sdk-sts | 1.11.655 |
com.amazonaws | aws-java-sdk-support | 1.11.655 |
com.amazonaws | aws-java-sdk-swf-libraries | 1.11.22 |
com.amazonaws | aws-java-sdk-workspaces | 1.11.655 |
com.amazonaws | jmespath-java | 1.11.655 |
com.chuusai | shapeless_2.12 | 2.3.3 |
com.clearspring.analytics | flux | 2.9.6 |
com.databricks | Rserve | 1.8-3 |
com.databricks | jets3t | 0.7.1-0 |
com.databricks.scalapb | compilerplugin_2.12 | 0.4.15-10 |
com.databricks.scalapb | scalapb-runtime_2.12 | 0.4.15-10 |
com.esotericsoftware | kryo-shaded | 4.0.2 |
com.esotericsoftware | minlog | 1.3.0 |
com.fasterxml | classmate | 1.3.4 |
com.fasterxml.jackson.core | jackson-annotations | 2.10.0 |
com.fasterxml.jackson.core | jackson-core | 2.10.0 |
com.fasterxml.jackson.core | jackson-databind | 2.10.0 |
com.fasterxml.jackson.dataformat | jackson-dataformat-cbor | 2.10.0 |
com.fasterxml.jackson.datatype | jackson-datatype-joda | 2.10.0 |
com.fasterxml.jackson.module | jackson-module-paranamer | 2.10.0 |
com.fasterxml.jackson.module | jackson-module-scala_2.12 | 2.10.0 |
com.github.ben-manes.caffeine | caffeine | 2.3.4 |
com.github.fommil | jniloader | 1.1 |
com.github.fommil.netlib | core | 1.1.2 |
com.github.fommil.netlib | native_ref-java | 1.1 |
com.github.fommil.netlib | native_ref-java-natives | 1.1 |
com.github.fommil.netlib | native_system-java | 1.1 |
com.github.fommil.netlib | native_system-java-natives | 1.1 |
com.github.fommil.netlib | netlib-native_ref-linux-x86_64-natives | 1.1 |
com.github.fommil.netlib | netlib-native_system-linux-x86_64-natives | 1.1 |
com.github.joshelser | dropwizard-metrics-hadoop-metrics2-reporter | 0.1.2 |
com.github.luben | zstd-jni | 1.4.8-1 |
com.github.wendykierp | JTransforms | 3.1 |
com.google.code.findbugs | jsr305 | 3.0.0 |
com.google.code.gson | gson | 2.2.4 |
com.google.flatbuffers | flatbuffers-java | 1.9.0 |
com.google.guava | guava | 15.0 |
com.google.protobuf | protobuf-java | 2.6.1 |
com.h2database | h2 | 1.4.195 |
com.helger | profiler | 1.1.1 |
com.jcraft | jsch | 0.1.50 |
com.jolbox | bonecp | 0.8.0.RELEASE |
com.lihaoyi | sourcecode_2.12 | 0.1.9 |
com.microsoft.azure | azure-data-lake-store-sdk | 2.3.9 |
com.microsoft.sqlserver | mssql-jdbc | 9.2.1.jre8 |
com.ning | compress-lzf | 1.0.3 |
com.sun.mail | javax.mail | 1.5.2 |
com.tdunning | json | 1.8 |
com.thoughtworks.paranamer | paranamer | 2.8 |
com.trueaccord.lenses | lenses_2.12 | 0.4.12 |
com.twitter | chill-java | 0.9.5 |
com.twitter | chill_2.12 | 0.9.5 |
com.twitter | util-app_2.12 | 7.1.0 |
com.twitter | util-core_2.12 | 7.1.0 |
com.twitter | util-function_2.12 | 7.1.0 |
com.twitter | util-jvm_2.12 | 7.1.0 |
com.twitter | util-lint_2.12 | 7.1.0 |
com.twitter | util-registry_2.12 | 7.1.0 |
com.twitter | util-stats_2.12 | 7.1.0 |
com.typesafe | config | 1.2.1 |
com.typesafe.scala-logging | scala-logging_2.12 | 3.7.2 |
com.univocity | univocity-parsers | 2.9.1 |
com.zaxxer | HikariCP | 3.1.0 |
commons-beanutils | commons-beanutils | 1.9.4 |
commons-cli | commons-cli | 1.2 |
commons-codec | commons-codec | 1,10 |
commons-collections | commons-collections | 3.2.2 |
commons-configuration | commons-configuration | 1.6 |
commons-dbcp | commons-dbcp | 1.4 |
commons-digester | commons-digester | 1.8 |
commons-fileupload | commons-fileupload | 1.3.3 |
commons-httpclient | commons-httpclient | 3.1 |
commons-io | commons-io | 2.4 |
commons-lang | commons-lang | 2.6 |
commons-logging | commons-logging | 1.1.3 |
commons-net | commons-net | 3.1 |
commons-pool | commons-pool | 1.5.4 |
hive-2.3__hadoop-2.7 | jets3t-0.7 | liball_deps_2.12 |
hive-2.3__hadoop-2.7 | zookeeper-3.4 | liball_deps_2.12 |
info.ganglia.gmetric4j | gmetric4j | 1.0.10 |
io.airlift | aircompressor | 0.10 |
io.dropwizard.metrics | metrics-core | 4.1.1 |
io.dropwizard.metrics | metrics-graphite | 4.1.1 |
io.dropwizard.metrics | metrics-healthchecks | 4.1.1 |
io.dropwizard.metrics | metrics-jetty9 | 4.1.1 |
io.dropwizard.metrics | metrics-jmx | 4.1.1 |
io.dropwizard.metrics | metrics-json | 4.1.1 |
io.dropwizard.metrics | metrics-jvm | 4.1.1 |
io.dropwizard.metrics | metrics-servlets | 4.1.1 |
io.netty | netty-all | 4.1.51.Final |
io.prometheus | simpleclient | 0.7.0 |
io.prometheus | simpleclient_common | 0.7.0 |
io.prometheus | simpleclient_dropwizard | 0.7.0 |
io.prometheus | simpleclient_pushgateway | 0.7.0 |
io.prometheus | simpleclient_servlet | 0.7.0 |
io.prometheus.jmx | collecteur | 0.12.0 |
jakarta.annotation | jakarta.annotation-api | 1.3.5 |
jakarta.validation | jakarta.validation-api | 2.0.2 |
jakarta.ws.rs | jakarta.ws.rs-api | 2.1.6 |
javax.activation | activation | 1.1.1 |
javax.el | javax.el-api | 2.2.4 |
javax.jdo | jdo-api | 3.0.1 |
javax.servlet | javax.servlet-api | 3.1.0 |
javax.servlet.jsp | jsp-api | 2.1 |
javax.transaction | jta | 1.1 |
javax.transaction | transaction-api | 1.1 |
javax.xml.bind | jaxb-api | 2.2.2 |
javax.xml.stream | stax-api | 1.0-2 |
javolution | javolution | 5.5.1 |
jline | jline | 2.14.6 |
joda-time | joda-time | 2.10.5 |
log4j | apache-log4j-extras | 1.2.17 |
log4j | log4j | 1.2.17 |
maven-trees | hive-2.3__hadoop-2.7 | liball_deps_2.12 |
net.razorvine | pyrolite | 4.30 |
net.sf.jpam | jpam | 1.1 |
net.sf.opencsv | opencsv | 2.3 |
net.sf.supercsv | super-csv | 2.2.0 |
net.snowflake | snowflake-ingest-sdk | 0.9.6 |
net.snowflake | snowflake-jdbc | 3.13.3 |
net.snowflake | spark-snowflake_2.12 | 2.9.0-spark_3.1 |
net.sourceforge.f2j | arpack_combined_all | 0.1 |
org.acplt.remotetea | remotetea-oncrpc | 1.1.2 |
org.antlr | ST4 | 4.0.4 |
org.antlr | antlr-runtime | 3.5.2 |
org.antlr | antlr4-runtime | 4.8-1 |
org.antlr | stringtemplate | 3.2.1 |
org.apache.ant | ant | 1.9.2 |
org.apache.ant | ant-jsch | 1.9.2 |
org.apache.ant | ant-launcher | 1.9.2 |
org.apache.arrow | arrow-format | 2.0.0 |
org.apache.arrow | arrow-memory-core | 2.0.0 |
org.apache.arrow | arrow-memory-netty | 2.0.0 |
org.apache.arrow | arrow-vector | 2.0.0 |
org.apache.avro | avro | 1.8.2 |
org.apache.avro | avro-ipc | 1.8.2 |
org.apache.avro | avro-mapred-hadoop2 | 1.8.2 |
org.apache.commons | commons-compress | 1.20 |
org.apache.commons | commons-crypto | 1.1.0 |
org.apache.commons | commons-lang3 | 3.10 |
org.apache.commons | commons-math3 | 3.4.1 |
org.apache.commons | commons-text | 1.6 |
org.apache.curator | curator-client | 2.7.1 |
org.apache.curator | curator-framework | 2.7.1 |
org.apache.curator | curator-recipes | 2.7.1 |
org.apache.derby | derby | 10.12.1.1 |
org.apache.directory.api | api-asn1-api | 1.0.0-M20 |
org.apache.directory.api | api-util | 1.0.0-M20 |
org.apache.directory.server | apacheds-i18n | 2.0.0-M15 |
org.apache.directory.server | apacheds-kerberos-codec | 2.0.0-M15 |
org.apache.hadoop | hadoop-annotations | 2.7.4 |
org.apache.hadoop | hadoop-auth | 2.7.4 |
org.apache.hadoop | hadoop-client | 2.7.4 |
org.apache.hadoop | hadoop-common | 2.7.4 |
org.apache.hadoop | hadoop-hdfs | 2.7.4 |
org.apache.hadoop | hadoop-mapreduce-client-app | 2.7.4 |
org.apache.hadoop | hadoop-mapreduce-client-common | 2.7.4 |
org.apache.hadoop | hadoop-mapreduce-client-core | 2.7.4 |
org.apache.hadoop | hadoop-mapreduce-client-jobclient | 2.7.4 |
org.apache.hadoop | hadoop-mapreduce-client-shuffle | 2.7.4 |
org.apache.hadoop | hadoop-yarn-api | 2.7.4 |
org.apache.hadoop | hadoop-yarn-client | 2.7.4 |
org.apache.hadoop | hadoop-yarn-common | 2.7.4 |
org.apache.hadoop | hadoop-yarn-server-common | 2.7.4 |
org.apache.hive | hive-beeline | 2.3.7 |
org.apache.hive | hive-cli | 2.3.7 |
org.apache.hive | hive-common | 2.3.7 |
org.apache.hive | hive-exec-core | 2.3.7 |
org.apache.hive | hive-jdbc | 2.3.7 |
org.apache.hive | hive-llap-client | 2.3.7 |
org.apache.hive | hive-llap-common | 2.3.7 |
org.apache.hive | hive-metastore | 2.3.7 |
org.apache.hive | hive-serde | 2.3.7 |
org.apache.hive | hive-shims | 2.3.7 |
org.apache.hive | hive-storage-api | 2.7.2 |
org.apache.hive | hive-vector-code-gen | 2.3.7 |
org.apache.hive.shims | hive-shims-0.23 | 2.3.7 |
org.apache.hive.shims | hive-shims-common | 2.3.7 |
org.apache.hive.shims | hive-shims-scheduler | 2.3.7 |
org.apache.htrace | htrace-core | 3.1.0-incubating |
org.apache.httpcomponents | httpclient | 4.5.6 |
org.apache.httpcomponents | httpcore | 4.4.12 |
org.apache.ivy | ivy | 2.4.0 |
org.apache.mesos | mesos-shaded-protobuf | 1.4.0 |
org.apache.orc | orc-core | 1.5.12 |
org.apache.orc | orc-mapreduce | 1.5.12 |
org.apache.orc | orc-shims | 1.5.12 |
org.apache.parquet | parquet-column | 1.10.1-databricks9 |
org.apache.parquet | parquet-common | 1.10.1-databricks9 |
org.apache.parquet | parquet-encoding | 1.10.1-databricks9 |
org.apache.parquet | parquet-format | 2.4.0 |
org.apache.parquet | parquet-hadoop | 1.10.1-databricks9 |
org.apache.parquet | parquet-jackson | 1.10.1-databricks9 |
org.apache.thrift | libfb303 | 0.9.3 |
org.apache.thrift | libthrift | 0.12.0 |
org.apache.velocity | velocity | 1.5 |
org.apache.xbean | xbean-asm7-shaded | 4.15 |
org.apache.yetus | audience-annotations | 0.5.0 |
org.apache.zookeeper | zookeeper | 3.4.14 |
org.codehaus.jackson | jackson-core-asl | 1.9.13 |
org.codehaus.jackson | jackson-jaxrs | 1.9.13 |
org.codehaus.jackson | jackson-mapper-asl | 1.9.13 |
org.codehaus.jackson | jackson-xc | 1.9.13 |
org.codehaus.janino | commons-compiler | 3.0.16 |
org.codehaus.janino | janino | 3.0.16 |
org.datanucleus | datanucleus-api-jdo | 4.2.4 |
org.datanucleus | datanucleus-core | 4.1.17 |
org.datanucleus | datanucleus-rdbms | 4.1.19 |
org.datanucleus | javax.jdo | 3.2.0-m3 |
org.eclipse.jetty | jetty-client | 9.4.36.v20210114 |
org.eclipse.jetty | jetty-continuation | 9.4.36.v20210114 |
org.eclipse.jetty | jetty-http | 9.4.36.v20210114 |
org.eclipse.jetty | jetty-io | 9.4.36.v20210114 |
org.eclipse.jetty | jetty-jndi | 9.4.36.v20210114 |
org.eclipse.jetty | jetty-plus | 9.4.36.v20210114 |
org.eclipse.jetty | jetty-proxy | 9.4.36.v20210114 |
org.eclipse.jetty | jetty-security | 9.4.36.v20210114 |
org.eclipse.jetty | jetty-server | 9.4.36.v20210114 |
org.eclipse.jetty | jetty-servlet | 9.4.36.v20210114 |
org.eclipse.jetty | jetty-servlets | 9.4.36.v20210114 |
org.eclipse.jetty | jetty-util | 9.4.36.v20210114 |
org.eclipse.jetty | jetty-util-ajax | 9.4.36.v20210114 |
org.eclipse.jetty | jetty-webapp | 9.4.36.v20210114 |
org.eclipse.jetty | jetty-xml | 9.4.36.v20210114 |
org.fusesource.leveldbjni | leveldbjni-all | 1.8 |
org.glassfish.hk2 | hk2-api | 2.6.1 |
org.glassfish.hk2 | hk2-locator | 2.6.1 |
org.glassfish.hk2 | hk2-utils | 2.6.1 |
org.glassfish.hk2 | osgi-resource-locator | 1.0.3 |
org.glassfish.hk2.external | aopalliance-repackaged | 2.6.1 |
org.glassfish.hk2.external | jakarta.inject | 2.6.1 |
org.glassfish.jersey.containers | jersey-container-servlet | 2.30 |
org.glassfish.jersey.containers | jersey-container-servlet-core | 2.30 |
org.glassfish.jersey.core | jersey-client | 2.30 |
org.glassfish.jersey.core | jersey-common | 2.30 |
org.glassfish.jersey.core | jersey-server | 2.30 |
org.glassfish.jersey.inject | jersey-hk2 | 2.30 |
org.glassfish.jersey.media | jersey-media-jaxb | 2.30 |
org.hibernate.validator | hibernate-validator | 6.1.0.Final |
org.javassist | javassist | 3.25.0-GA |
org.jboss.logging | jboss-logging | 3.3.2.Final |
org.jdbi | jdbi | 2.63.1 |
org.joda | joda-convert | 1.7 |
org.jodd | jodd-core | 3.5.2 |
org.json4s | json4s-ast_2.12 | 3.7.0-M5 |
org.json4s | json4s-core_2.12 | 3.7.0-M5 |
org.json4s | json4s-jackson_2.12 | 3.7.0-M5 |
org.json4s | json4s-scalap_2.12 | 3.7.0-M5 |
org.lz4 | lz4-java | 1.7.1 |
org.mariadb.jdbc | mariadb-java-client | 2.2.5 |
org.objenesis | objenesis | 2.5.1 |
org.postgresql | postgresql | 42.1.4 |
org.roaringbitmap | RoaringBitmap | 0.9.0 |
org.roaringbitmap | shims | 0.9.0 |
org.rocksdb | rocksdbjni | 6.2.2 |
org.rosuda.REngine | REngine | 2.1.0 |
org.scala-lang | scala-compiler_2.12 | 2.12.10 |
org.scala-lang | scala-library_2.12 | 2.12.10 |
org.scala-lang | scala-reflect_2.12 | 2.12.10 |
org.scala-lang.modules | scala-collection-compat_2.12 | 2.1.1 |
org.scala-lang.modules | scala-parser-combinators_2.12 | 1.1.2 |
org.scala-lang.modules | scala-xml_2.12 | 1.2.0 |
org.scala-sbt | test-interface | 1.0 |
org.scalacheck | scalacheck_2.12 | 1.14.2 |
org.scalactic | scalactic_2.12 | 3.0.8 |
org.scalanlp | breeze-macros_2.12 | 1.0 |
org.scalanlp | breeze_2.12 | 1.0 |
org.scalatest | scalatest_2.12 | 3.0.8 |
org.slf4j | jcl-over-slf4j | 1.7.30 |
org.slf4j | jul-to-slf4j | 1.7.30 |
org.slf4j | slf4j-api | 1.7.30 |
org.slf4j | slf4j-log4j12 | 1.7.30 |
org.spark-project.spark | unused | 1.0.0 |
org.springframework | spring-core | 4.1.4.RELEASE |
org.springframework | spring-test | 4.1.4.RELEASE |
org.threeten | threeten-extra | 1.5.0 |
org.tukaani | xz | 1.5 |
org.typelevel | algebra_2.12 | 2.0.0-M2 |
org.typelevel | cats-kernel_2.12 | 2.0.0-M4 |
org.typelevel | machinist_2.12 | 0.6.8 |
org.typelevel | macro-compat_2.12 | 1.1.1 |
org.typelevel | spire-macros_2.12 | 0.17.0-M1 |
org.typelevel | spire-platform_2.12 | 0.17.0-M1 |
org.typelevel | spire-util_2.12 | 0.17.0-M1 |
org.typelevel | spire_2.12 | 0.17.0-M1 |
org.wildfly.openssl | wildfly-openssl | 1.0.7.Final |
org.xerial | sqlite-jdbc | 3.8.11.2 |
org.xerial.snappy | snappy-java | 1.1.8.2 |
org.yaml | snakeyaml | 1.24 |
oro | oro | 2.0.8 |
pl.edu.icm | JLargeArrays | 1.5 |
software.amazon.ion | ion-java | 1.0.2 |
stax | stax-api | 1.0.1 |
xmlenc | xmlenc | 0.52 |