<complex>
, opérateurs
operator!=
Vérifie l'inégalité entre deux nombres complexes, l'un d'entre eux ou les deux pouvant appartenir au sous-ensemble du type pour les parties réelles et imaginaires.
template <class Type>
bool operator!=(
const complex<Type>& left,
const complex<Type>& right);
template <class Type>
bool operator!=(
const complex<Type>& left,
const Type& right);
template <class Type>
bool operator!=(
const Type& left,
const complex<Type>& right);
Paramètres
left
Nombre ou objet complexe de son type de paramètre à tester pour vérifier l'inégalité.
right
Nombre ou objet complexe de son type de paramètre à tester pour vérifier l'inégalité.
Valeur de retour
true
si les nombres ne sont pas égaux ; false
si les nombres sont égaux.
Notes
Deux nombres complexes sont égaux si et seulement si leurs parties réelles sont égales et leurs parties imaginaires sont égales. Sinon, elles sont inégales.
L'opération est surchargée pour permettre l'exécution de tests de comparaison sans convertir les données dans un format particulier.
Exemple
// complex_op_NE.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
// Example of the first member function
// type complex<double> compared with type complex<double>
complex <double> cl1 ( polar (3.0, pi / 6 ) );
complex <double> cr1a ( polar (3.0, pi /6 ) );
complex <double> cr1b ( polar (2.0, pi / 3 ) );
cout << "The left-side complex number is cl1 = " << cl1 << endl;
cout << "The 1st right-side complex number is cr1a = " << cr1a << endl;
cout << "The 2nd right-side complex number is cr1b = " << cr1b << endl;
if ( cl1 != cr1a )
cout << "The complex numbers cl1 & cr1a are not equal." << endl;
else
cout << "The complex numbers cl1 & cr1a are equal." << endl;
if ( cl1 != cr1b )
cout << "The complex numbers cl1 & cr1b are not equal." << endl;
else
cout << "The complex numbers cl1 & cr1b are equal." << endl;
cout << endl;
// Example of the second member function
// type complex<int> compared with type int
complex <int> cl2a ( 3, 4 );
complex <int> cl2b ( 5,0 );
int cr2a =3;
int cr2b =5;
cout << "The 1st left-side complex number is cl2a = " << cl2a << endl;
cout << "The 1st right-side complex number is cr2a = " << cr2a << endl;
if ( cl2a != cr2a )
cout << "The complex numbers cl2a & cr2a are not equal." << endl;
else
cout << "The complex numbers cl2a & cr2a are equal." << endl;
cout << "The 2nd left-side complex number is cl2b = " << cl2b << endl;
cout << "The 2nd right-side complex number is cr2b = " << cr2b << endl;
if ( cl2b != cr2b )
cout << "The complex numbers cl2b & cr2b are not equal." << endl;
else
cout << "The complex numbers cl2b & cr2b are equal." << endl;
cout << endl;
// Example of the third member function
// type double compared with type complex<double>
double cl3a =3;
double cl3b =5;
complex <double> cr3a ( 3, 4 );
complex <double> cr3b ( 5,0 );
cout << "The 1st left-side complex number is cl3a = " << cl3a << endl;
cout << "The 1st right-side complex number is cr3a = " << cr3a << endl;
if ( cl3a != cr3a )
cout << "The complex numbers cl3a & cr3a are not equal." << endl;
else
cout << "The complex numbers cl3a & cr3a are equal." << endl;
cout << "The 2nd left-side complex number is cl3b = " << cl3b << endl;
cout << "The 2nd right-side complex number is cr3b = " << cr3b << endl;
if ( cl3b != cr3b )
cout << "The complex numbers cl3b & cr3b are not equal." << endl;
else
cout << "The complex numbers cl3b & cr3b are equal." << endl;
cout << endl;
}
The left-side complex number is cl1 = (2.59808,1.5)
The 1st right-side complex number is cr1a = (2.59808,1.5)
The 2nd right-side complex number is cr1b = (1,1.73205)
The complex numbers cl1 & cr1a are equal.
The complex numbers cl1 & cr1b are not equal.
The 1st left-side complex number is cl2a = (3,4)
The 1st right-side complex number is cr2a = 3
The complex numbers cl2a & cr2a are not equal.
The 2nd left-side complex number is cl2b = (5,0)
The 2nd right-side complex number is cr2b = 5
The complex numbers cl2b & cr2b are equal.
The 1st left-side complex number is cl3a = 3
The 1st right-side complex number is cr3a = (3,4)
The complex numbers cl3a & cr3a are not equal.
The 2nd left-side complex number is cl3b = 5
The 2nd right-side complex number is cr3b = (5,0)
The complex numbers cl3b & cr3b are equal.
operator*
Multiplie deux nombres complexes, l'un d'entre eux ou les deux pouvant appartenir au sous-ensemble du type pour les parties réelles et imaginaires.
template <class Type>
complex<Type> operator*(
const complex<Type>& left,
const complex<Type>& right);
template <class Type>
complex<Type> operator*(
const complex<Type>& left,
const Type& right);
template <class Type>
complex<Type> operator*(
const Type& left,
const complex<Type>& right);
Paramètres
left
Le premier de deux nombres complexes ou un nombre qui a le même type de paramètre qu’un nombre complexe, lequel doit être multiplié par l’opération *.
right
Le deuxième de deux nombres complexes ou un nombre qui a le même type de paramètre qu’un nombre complexe, lequel doit être multiplié par l’opération *.
Valeur de retour
Nombre complexe qui résulte de la multiplication de deux nombres dont la valeur et le type sont spécifiés par les entrées de paramètre.
Notes
L’opération est surchargée pour permettre l’exécution d’opérations d’arithmétique simples sans convertir les données dans un format particulier.
Exemple
// complex_op_mult.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
// Example of the first member function
// type complex<double> times type complex<double>
complex <double> cl1 ( polar (3.0, pi / 6 ) );
complex <double> cr1 ( polar (2.0, pi / 3 ) );
complex <double> cs1 = cl1 * cr1;
cout << "The left-side complex number is cl1 = " << cl1 << endl;
cout << "The right-side complex number is cr1 = " << cr1 << endl;
cout << "Product of two complex numbers is: cs1 = " << cs1 << endl;
double abscs1 = abs ( cs1 );
double argcs1 = arg ( cs1 );
cout << "The modulus of cs1 is: " << abscs1 << endl;
cout << "The argument of cs1 is: "<< argcs1 << " radians, which is "
<< argcs1 * 180 / pi << " degrees." << endl << endl;
// Example of the second member function
// type complex<double> times type double
complex <double> cl2 ( polar ( 3.0, pi / 6 ) );
double cr2 =5;
complex <double> cs2 = cl2 * cr2;
cout << "The left-side complex number is cl2 = " << cl2 << endl;
cout << "The right-side complex number is cr2 = " << cr2 << endl;
cout << "Product of two complex numbers is: cs2 = " << cs2 << endl;
double abscs2 = abs ( cs2 );
double argcs2 = arg ( cs2 );
cout << "The modulus of cs2 is: " << abscs2 << endl;
cout << "The argument of cs2 is: "<< argcs2 << " radians, which is "
<< argcs2 * 180 / pi << " degrees." << endl << endl;
// Example of the third member function
// type double times type complex<double>
double cl3 = 5;
complex <double> cr3 ( polar (3.0, pi / 6 ) );
complex <double> cs3 = cl3 * cr3;
cout << "The left-side complex number is cl3 = " << cl3 << endl;
cout << "The right-side complex number is cr3 = " << cr3 << endl;
cout << "Product of two complex numbers is: cs3 = " << cs3 << endl;
double abscs3 = abs ( cs3 );
double argcs3 = arg ( cs3 );
cout << "The modulus of cs3 is: " << abscs3 << endl;
cout << "The argument of cs3 is: "<< argcs3 << " radians, which is "
<< argcs3 * 180 / pi << " degrees." << endl << endl;
}
operator+
Additionne deux nombres complexes, l'un d'entre eux ou les deux pouvant appartenir au sous-ensemble du type pour les parties réelles et imaginaires.
template <class Type>
complex<Type> operator+(
const complex<Type>& left,
const complex<Type>& right);
template <class Type>
complex<Type> operator+(
const complex<Type>& left,
const Type& right);
template <class Type>
complex<Type> operator+(
const Type& left,
const complex<Type>& right);
template <class Type>
complex<Type> operator+(const complex<Type>& left);
Paramètres
left
Le premier de deux nombres complexes ou un nombre qui a le même type de paramètre qu’un nombre complexe, lequel doit être ajouté par l’opération +.
right
Le deuxième de deux nombres complexes ou un nombre qui a le même type de paramètre qu’un nombre complexe, lequel doit être ajouté par l’opération +.
Valeur de retour
Nombre complexe qui résulte de l’addition de deux nombres dont la valeur et le type sont spécifiés par les entrées de paramètre.
Notes
L’opération est surchargée pour permettre l’exécution d’opérations d’arithmétique simples sans convertir les données dans un format particulier. L’opérateur unaire retourne à gauche.
Exemple
// complex_op_add.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
// Example of the first member function
// type complex<double> plus type complex<double>
complex <double> cl1 ( 3.0, 4.0 );
complex <double> cr1 ( 2.0, 5.0 );
complex <double> cs1 = cl1 + cr1;
cout << "The left-side complex number is cl1 = " << cl1 << endl;
cout << "The right-side complex number is cr1 = " << cr1 << endl;
cout << "The sum of the two complex numbers is: cs1 = " << cs1 << endl;
double abscs1 = abs ( cs1 );
double argcs1 = arg ( cs1 );
cout << "The modulus of cs1 is: " << abscs1 << endl;
cout << "The argument of cs1 is: "<< argcs1 << " radians, which is "
<< argcs1 * 180 / pi << " degrees." << endl << endl;
// Example of the second member function
// type complex<double> plus type double
complex <double> cl2 ( 3.0, 4.0 );
double cr2 =5.0;
complex <double> cs2 = cl2 + cr2;
cout << "The left-side complex number is cl2 = " << cl2 << endl;
cout << "The right-side complex number is cr2 = " << cr2 << endl;
cout << "The sum of the two complex numbers is: cs2 = " << cs2 << endl;
double abscs2 = abs ( cs2 );
double argcs2 = arg ( cs2 );
cout << "The modulus of cs2 is: " << abscs2 << endl;
cout << "The argument of cs2 is: "<< argcs2 << " radians, which is "
<< argcs2 * 180 / pi << " degrees." << endl << endl;
// Example of the third member function
// type double plus type complex<double>
double cl3 = 5.0;
complex <double> cr3 ( 3.0, 4.0 );
complex <double> cs3 = cl3 + cr3;
cout << "The left-side complex number is cl3 = " << cl3 << endl;
cout << "The right-side complex number is cr3 = " << cr3 << endl;
cout << "The sum of the two complex numbers is: cs3 = " << cs3 << endl;
double abscs3 = abs ( cs3 );
double argcs3 = arg ( cs3 );
cout << "The modulus of cs3 is: " << abscs3 << endl;
cout << "The argument of cs3 is: "<< argcs3 << " radians, which is "
<< argcs3 * 180 / pi << " degrees." << endl << endl;
// Example of the fourth member function
// plus type complex<double>
complex <double> cr4 ( 3.0, 4.0 );
complex <double> cs4 = + cr4;
cout << "The right-side complex number is cr4 = " << cr4 << endl;
cout << "The result of the unary application of + to the right-side"
<< "\n complex number is: cs4 = " << cs4 << endl;
double abscs4 = abs ( cs4 );
double argcs4 = arg ( cs4 );
cout << "The modulus of cs4 is: " << abscs4 << endl;
cout << "The argument of cs4 is: "<< argcs4 << " radians, which is "
<< argcs4 * 180 / pi << " degrees." << endl << endl;
}
The left-side complex number is cl1 = (3,4)
The right-side complex number is cr1 = (2,5)
The sum of the two complex numbers is: cs1 = (5,9)
The modulus of cs1 is: 10.2956
The argument of cs1 is: 1.0637 radians, which is 60.9454 degrees.
The left-side complex number is cl2 = (3,4)
The right-side complex number is cr2 = 5
The sum of the two complex numbers is: cs2 = (8,4)
The modulus of cs2 is: 8.94427
The argument of cs2 is: 0.463648 radians, which is 26.5651 degrees.
The left-side complex number is cl3 = 5
The right-side complex number is cr3 = (3,4)
The sum of the two complex numbers is: cs3 = (8,4)
The modulus of cs3 is: 8.94427
The argument of cs3 is: 0.463648 radians, which is 26.5651 degrees.
The right-side complex number is cr4 = (3,4)
The result of the unary application of + to the right-side
complex number is: cs4 = (3,4)
The modulus of cs4 is: 5
The argument of cs4 is: 0.927295 radians, which is 53.1301 degrees.
operator-
Soustrait deux nombres complexes, l'un d'entre eux ou les deux pouvant appartenir au sous-ensemble du type pour les parties réelles et imaginaires.
template <class Type>
complex<Type> operator-(
const complex<Type>& left,
const complex<Type>& right);
template <class Type>
complex<Type> operator-(
const complex<Type>& left,
const Type& right);
template <class Type>
complex<Type> operator-(
const Type& left,
const complex<Type>& right);
template <class Type>
complex<Type> operator-(const complex<Type>& left);
Paramètres
left
Le premier de deux nombres complexes ou un nombre qui a le même type de paramètre qu’un nombre complexe, lequel doit être soustrait par l’opération -.
right
Le deuxième de deux nombres complexes ou un nombre qui a le même type de paramètre qu’un nombre complexe, lequel doit être soustrait par l’opération -.
Valeur de retour
Nombre complexe qui résulte de la soustraction de droite de gauche, les deux nombres dont les valeurs sont spécifiées par les entrées de paramètre.
Notes
L’opération est surchargée pour permettre l’exécution d’opérations d’arithmétique simples sans convertir les données dans un format particulier.
L’opérateur unaire change le signe d’un nombre complexe et retourne une valeur dont la partie réelle est la forme négative de la partie réelle du nombre entré et dont la partie imaginaire est la forme négative de la partie imaginaire du nombre entré.
Exemple
// complex_op_sub.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
// Example of the first member function
// type complex<double> minus type complex<double>
complex <double> cl1 ( 3.0, 4.0 );
complex <double> cr1 ( 2.0, 5.0 );
complex <double> cs1 = cl1 - cr1;
cout << "The left-side complex number is cl1 = " << cl1 << endl;
cout << "The right-side complex number is cr1 = " << cr1 << endl;
cout << "Difference of two complex numbers is: cs1 = " << cs1 << endl;
double abscs1 = abs ( cs1 );
double argcs1 = arg ( cs1 );
cout << "The modulus of cs1 is: " << abscs1 << endl;
cout << "The argument of cs1 is: "<< argcs1 << " radians, which is "
<< argcs1 * 180 / pi << " degrees." << endl << endl;
// Example of the second member function
// type complex<double> minus type double
complex <double> cl2 ( 3.0, 4.0 );
double cr2 =5.0;
complex <double> cs2 = cl2 - cr2;
cout << "The left-side complex number is cl2 = " << cl2 << endl;
cout << "The right-side complex number is cr2 = " << cr2 << endl;
cout << "Difference of two complex numbers is: cs2 = " << cs2 << endl;
double abscs2 = abs ( cs2 );
double argcs2 = arg ( cs2 );
cout << "The modulus of cs2 is: " << abscs2 << endl;
cout << "The argument of cs2 is: "<< argcs2 << " radians, which is "
<< argcs2 * 180 / pi << " degrees." << endl << endl;
// Example of the third member function
// type double minus type complex<double>
double cl3 = 5.0;
complex <double> cr3 ( 3.0, 4.0 );
complex <double> cs3 = cl3 - cr3;
cout << "The left-side complex number is cl3 = " << cl3 << endl;
cout << "The right-side complex number is cr3 = " << cr3 << endl;
cout << "Difference of two complex numbers is: cs3 = " << cs3 << endl;
double abscs3 = abs ( cs3 );
double argcs3 = arg ( cs3 );
cout << "The modulus of cs3 is: " << abscs3 << endl;
cout << "The argument of cs3 is: "<< argcs3 << " radians, which is "
<< argcs3 * 180 / pi << " degrees." << endl << endl;
// Example of the fourth member function
// minus type complex<double>
complex <double> cr4 ( 3.0, 4.0 );
complex <double> cs4 = - cr4;
cout << "The right-side complex number is cr4 = " << cr4 << endl;
cout << "The result of the unary application of - to the right-side"
<< "\n complex number is: cs4 = " << cs4 << endl;
double abscs4 = abs ( cs4 );
double argcs4 = arg ( cs4 );
cout << "The modulus of cs4 is: " << abscs4 << endl;
cout << "The argument of cs4 is: "<< argcs4 << " radians, which is "
<< argcs4 * 180 / pi << " degrees." << endl << endl;
}
The left-side complex number is cl1 = (3,4)
The right-side complex number is cr1 = (2,5)
Difference of two complex numbers is: cs1 = (1,-1)
The modulus of cs1 is: 1.41421
The argument of cs1 is: -0.785398 radians, which is -45 degrees.
The left-side complex number is cl2 = (3,4)
The right-side complex number is cr2 = 5
Difference of two complex numbers is: cs2 = (-2,4)
The modulus of cs2 is: 4.47214
The argument of cs2 is: 2.03444 radians, which is 116.565 degrees.
The left-side complex number is cl3 = 5
The right-side complex number is cr3 = (3,4)
Difference of two complex numbers is: cs3 = (2,-4)
The modulus of cs3 is: 4.47214
The argument of cs3 is: -1.10715 radians, which is -63.4349 degrees.
The right-side complex number is cr4 = (3,4)
The result of the unary application of - to the right-side
complex number is: cs4 = (-3,-4)
The modulus of cs4 is: 5
The argument of cs4 is: -2.2143 radians, which is -126.87 degrees.
operator/
Divise deux nombres complexes, l'un d'entre eux ou les deux pouvant appartenir au sous-ensemble du type pour les parties réelles et imaginaires.
template <class Type>
complex<Type> operator*(
const complex<Type>& left,
const complex<Type>& right);
template <class Type>
complex<Type> operator*(
const complex<Type>& left,
const Type& right);
template <class Type>
complex<Type> operator*(
const Type& left,
const complex<Type>& right);
Paramètres
left
Un nombre complexe ou un nombre qui a le même type de paramètre qu’un nombre complexe, lequel est le numérateur à diviser par le dénominateur avec l’opération /.
right
Un nombre complexe ou un nombre qui a le même type de paramètre qu’un nombre complexe, lequel est le dénominateur à utiliser pour diviser le numérateur avec l’opération /.
Valeur de retour
Nombre complexe qui résulte de la division du numérateur par le dénominateur, dont les valeurs sont spécifiées par les entrées de paramètre.
Notes
L’opération est surchargée pour permettre l’exécution d’opérations d’arithmétique simples sans convertir les données dans un format particulier.
Exemple
// complex_op_div.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
// Example of the first member function
// type complex<double> divided by type complex<double>
complex <double> cl1 ( polar ( 3.0, pi / 6 ) );
complex <double> cr1 ( polar ( 2.0, pi / 3 ) );
complex <double> cs1 = cl1 / cr1;
cout << "The left-side complex number is cl1 = " << cl1 << endl;
cout << "The right-side complex number is cr1 = " << cr1 << endl;
cout << "The quotient of the two complex numbers is: cs1 = cl1 /cr1 = "
<< cs1 << endl;
double abscs1 = abs ( cs1 );
double argcs1 = arg ( cs1 );
cout << "The modulus of cs1 is: " << abscs1 << endl;
cout << "The argument of cs1 is: "<< argcs1 << " radians, which is "
<< argcs1 * 180 / pi << " degrees." << endl << endl;
// example of the second member function
// type complex<double> divided by type double
complex <double> cl2 ( polar (3.0, pi / 6 ) );
double cr2 =5;
complex <double> cs2 = cl2 / cr2;
cout << "The left-side complex number is cl2 = " << cl2 << endl;
cout << "The right-side complex number is cr2 = " << cr2 << endl;
cout << "The quotient of the two complex numbers is: cs2 = cl2 /cr2 = "
<< cs2 << endl;
double abscs2 = abs ( cs2 );
double argcs2 = arg ( cs2 );
cout << "The modulus of cs2 is: " << abscs2 << endl;
cout << "The argument of cs2 is: "<< argcs2 << " radians, which is "
<< argcs2 * 180 / pi << " degrees." << endl << endl;
// Example of the third member function
// type double divided by type complex<double>
double cl3 = 5;
complex <double> cr3 ( polar ( 3.0, pi / 6 ) );
complex <double> cs3 = cl3 / cr3;
cout << "The left-side complex number is cl3 = " << cl3 << endl;
cout << "The right-side complex number is cr3 = " << cr3 << endl;
cout << "The quotient of the two complex numbers is: cs3 = cl3 /cr2 = "
<< cs3 << endl;
double abscs3 = abs ( cs3 );
double argcs3 = arg ( cs3 );
cout << "The modulus of cs3 is: " << abscs3 << endl;
cout << "The argument of cs3 is: "<< argcs3 << " radians, which is "
<< argcs3 * 180 / pi << " degrees." << endl << endl;
}
The left-side complex number is cl1 = (2.59808,1.5)
The right-side complex number is cr1 = (1,1.73205)
The quotient of the two complex numbers is: cs1 = cl1 /cr1 = (1.29904,-0.75)
The modulus of cs1 is: 1.5
The argument of cs1 is: -0.523599 radians, which is -30 degrees.
The left-side complex number is cl2 = (2.59808,1.5)
The right-side complex number is cr2 = 5
The quotient of the two complex numbers is: cs2 = cl2 /cr2 = (0.519615,0.3)
The modulus of cs2 is: 0.6
The argument of cs2 is: 0.523599 radians, which is 30 degrees.
The left-side complex number is cl3 = 5
The right-side complex number is cr3 = (2.59808,1.5)
The quotient of the two complex numbers is: cs3 = cl3 /cr2 = (1.44338,-0.833333)
The modulus of cs3 is: 1.66667
The argument of cs3 is: -0.523599 radians, which is -30 degrees.
operator<<
Insère un nombre complexe spécifié dans le flux de sortie.
template <class Type, class Elem, class Traits>
basic_ostream<Elem, Traits>& operator<<(
basic_ostream<Elem, Traits>& Ostr,
const complex<Type>& right);
Paramètres
Ostr
Flux de sortie dans lequel le nombre complexe est entré.
right
Nombre complexe à entrer dans le flux de sortie
Valeur de retour
Écrit la valeur du nombre complexe spécifié dans l’Ostr dans un format cartésien : ( partie réelle, partie imaginaire ).
Notes
Le flux de sortie est surchargé pour n’accepter aucune forme d’un nombre complexe, et son format de sortie par défaut est le format cartésien.
Exemple
// complex_op_insert.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
complex <double> c1 ( 3.0, 4.0 );
cout << "Complex number c1 = " << c1 << endl;
complex <double> c2 ( polar ( 2.0, pi / 6 ) );
cout << "Complex number c2 = " << c2 << endl;
// To display in polar form
double absc2 = abs ( c2 );
double argc2 = arg ( c2 );
cout << "The modulus of c2 is: " << absc2 << endl;
cout << "The argument of c2 is: "<< argc2 << " radians, which is "
<< argc2 * 180 / pi << " degrees." << endl << endl;
}
Complex number c1 = (3,4)
Complex number c2 = (1.73205,1)
The modulus of c2 is: 2
The argument of c2 is: 0.523599 radians, which is 30 degrees.
operator==
Vérifie l'égalité entre deux nombres complexes, l'un d'entre eux ou les deux pouvant appartenir au sous-ensemble du type pour les parties réelles et imaginaires.
template <class Type>
bool operator==(
const complex<Type>& left,
const complex<Type>& right);
template <class Type>
bool operator==(
const complex<Type>& left,
const Type& right);
template <class Type>
bool operator==(
const Type& left,
const complex<Type>& right);
Paramètres
left
Nombre ou objet complexe de son type de paramètre à tester pour vérifier l'inégalité.
right
Nombre ou objet complexe de son type de paramètre à tester pour vérifier l'inégalité.
Valeur de retour
true
si les nombres sont égaux ; false
si les nombres ne sont pas égaux.
Notes
Deux nombres complexes sont égaux si et seulement si leurs parties réelles sont égales et leurs parties imaginaires sont égales. Sinon, elles sont inégales.
L'opération est surchargée pour permettre l'exécution de tests de comparaison sans convertir les données dans un format particulier.
Exemple
// complex_op_EQ.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
// Example of the first member function
// type complex<double> compared with type complex<double>
complex <double> cl1 ( polar ( 3.0, pi / 6 ) );
complex <double> cr1a ( polar ( 3.0, pi /6 ) );
complex <double> cr1b ( polar ( 2.0, pi / 3 ) );
cout << "The left-side complex number is cl1 = " << cl1 << endl;
cout << "The 1st right-side complex number is cr1a = " << cr1a << endl;
cout << "The 2nd right-side complex number is cr1b = " << cr1b << endl;
if ( cl1 == cr1a )
cout << "The complex numbers cl1 & cr1a are equal." << endl;
else
cout << "The complex numbers cl1 & cr1a are not equal." << endl;
if ( cl1 == cr1b )
cout << "The complex numbers cl1 & cr1b are equal." << endl;
else
cout << "The complex numbers cl1 & cr1b are not equal." << endl;
cout << endl;
// Example of the second member function
// type complex<int> compared with type int
complex <int> cl2a ( 3, 4 );
complex <int> cl2b ( 5,0 );
int cr2a =3;
int cr2b =5;
cout << "The 1st left-side complex number is cl2a = " << cl2a << endl;
cout << "The 1st right-side complex number is cr2a = " << cr2a << endl;
if ( cl2a == cr2a )
cout << "The complex numbers cl2a & cr2a are equal." << endl;
else
cout << "The complex numbers cl2a & cr2a are not equal." << endl;
cout << "The 2nd left-side complex number is cl2b = " << cl2b << endl;
cout << "The 2nd right-side complex number is cr2b = " << cr2b << endl;
if ( cl2b == cr2b )
cout << "The complex numbers cl2b & cr2b are equal." << endl;
else
cout << "The complex numbers cl2b & cr2b are not equal." << endl;
cout << endl;
// Example of the third member function
// type double compared with type complex<double>
double cl3a =3;
double cl3b =5;
complex <double> cr3a (3, 4 );
complex <double> cr3b (5,0 );
cout << "The 1st left-side complex number is cl3a = " << cl3a << endl;
cout << "The 1st right-side complex number is cr3a = " << cr3a << endl;
if ( cl3a == cr3a )
cout << "The complex numbers cl3a & cr3a are equal." << endl;
else
cout << "The complex numbers cl3a & cr3a are not equal." << endl;
cout << "The 2nd left-side complex number is cl3b = " << cl3b << endl;
cout << "The 2nd right-side complex number is cr3b = " << cr3b << endl;
if ( cl3b == cr3b )
cout << "The complex numbers cl3b & cr3b are equal." << endl;
else
cout << "The complex numbers cl3b & cr3b are not equal." << endl;
cout << endl;
}
The left-side complex number is cl1 = (2.59808,1.5)
The 1st right-side complex number is cr1a = (2.59808,1.5)
The 2nd right-side complex number is cr1b = (1,1.73205)
The complex numbers cl1 & cr1a are equal.
The complex numbers cl1 & cr1b are not equal.
The 1st left-side complex number is cl2a = (3,4)
The 1st right-side complex number is cr2a = 3
The complex numbers cl2a & cr2a are not equal.
The 2nd left-side complex number is cl2b = (5,0)
The 2nd right-side complex number is cr2b = 5
The complex numbers cl2b & cr2b are equal.
The 1st left-side complex number is cl3a = 3
The 1st right-side complex number is cr3a = (3,4)
The complex numbers cl3a & cr3a are not equal.
The 2nd left-side complex number is cl3b = 5
The 2nd right-side complex number is cr3b = (5,0)
The complex numbers cl3b & cr3b are equal.
operator>>
Extrait une valeur complexe du flux d’entrée.
template <class Type, class Elem, class Traits>
basic_istream<Elem, Traits>& operator>>(
basic_istream<Elem, Traits>& Istr,
complex<Type>& right);
Paramètres
Istr
Flux d’entrée duquel le nombre complexe est extrait.
right
Nombre complexe extrait du flux d’entrée.
Valeur de retour
Lit la valeur du nombre complexe spécifié à partir d’Istr et le retourne à droite.
Notes
Les formats d’entrée valides sont
(partie réelle, partie imaginaire)
(partie réelle)
partie réelle
Exemple
// complex_op_extract.cpp
// compile with: /EHsc
#include <complex>
#include <iostream>
int main( )
{
using namespace std;
double pi = 3.14159265359;
complex <double> c2;
cout << "Input a complex number ( try: 2.0 ): ";
cin >> c2;
cout << c2 << endl;
}
Input a complex number ( try: 2.0 ): 2.0
2.0