gamma_distribution, classe
Génère une distribution Gamma.
Syntaxe
template<class RealType = double>
class gamma_distribution {
public:
// types
typedef RealType result_type;
struct param_type;
// constructors and reset functions
explicit gamma_distribution(result_type alpha = 1.0, result_type beta = 1.0);
explicit gamma_distribution(const param_type& parm);
void reset();
// generating functions
template <class URNG>
result_type operator()(URNG& gen);
template <class URNG>
result_type operator()(URNG& gen, const param_type& parm);
// property functions
result_type alpha() const;
result_type beta() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
};
Paramètres
RealType
Le type des résultats à virgule flottante est double
par défaut. Pour les types possibles, consultez <aléatoire>.
URNG
Moteur de générateur de nombres aléatoires uniforme. Pour les types possibles, consultez <aléatoire>.
Notes
Le modèle de classe décrit une distribution qui produit des valeurs d’un type à virgule flottante spécifié par l’utilisateur, ou type double
si aucun n’est fourni, distribué en fonction de la distribution Gamma. Le tableau suivant contient des liens vers des articles sur différents membres.
Les fonctions de propriété alpha()
et beta()
retournent leurs valeurs respectives pour les paramètres de distribution stockés alpha et beta.
Le membre de propriété param()
définit ou retourne le package de paramètres de distribution stocké param_type
.
Les fonctions membres min()
et max()
retournent respectivement le plus petit et le plus grand résultat possible.
La fonction membre reset()
ignore toutes les valeurs mises en cache. Ainsi, le résultat de l’appel suivant à operator()
ne dépend d’aucune valeur obtenue à partir du moteur avant l’appel.
Les fonctions membres operator()
retournent la valeur générée suivante d’après le moteur URNG, à partir du package de paramètres actuel ou spécifié.
Pour plus d’informations sur les classes de distribution et leurs membres, consultez <aléatoire>.
Pour plus d’informations sur la loi de Gamma, consultez l’article de Wolfram MathWorld Gamma Distribution.
Exemple
// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>
void test(const double a, const double b, const int s) {
// uncomment to use a non-deterministic generator
// std::random_device gen;
std::mt19937 gen(1701);
std::gamma_distribution<> distr(a, b);
std::cout << std::endl;
std::cout << "min() == " << distr.min() << std::endl;
std::cout << "max() == " << distr.max() << std::endl;
std::cout << "alpha() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.alpha() << std::endl;
std::cout << "beta() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.beta() << std::endl;
// generate the distribution as a histogram
std::map<double, int> histogram;
for (int i = 0; i < s; ++i) {
++histogram[distr(gen)];
}
// print results
std::cout << "Distribution for " << s << " samples:" << std::endl;
int counter = 0;
for (const auto& elem : histogram) {
std::cout << std::fixed << std::setw(11) << ++counter << ": "
<< std::setw(14) << std::setprecision(10) << elem.first << std::endl;
}
std::cout << std::endl;
}
int main()
{
double a_dist = 0.0;
double b_dist = 1;
int samples = 10;
std::cout << "Use CTRL-Z to bypass data entry and run using default values." << std::endl;
std::cout << "Enter a floating point value for the 'alpha' distribution parameter (must be greater than zero): ";
std::cin >> a_dist;
std::cout << "Enter a floating point value for the 'beta' distribution parameter (must be greater than zero): ";
std::cin >> b_dist;
std::cout << "Enter an integer value for the sample count: ";
std::cin >> samples;
test(a_dist, b_dist, samples);
}
Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'alpha' distribution parameter (must be greater than zero): 1
Enter a floating point value for the 'beta' distribution parameter (must be greater than zero): 1
Enter an integer value for the sample count: 10
min() == 4.94066e-324
max() == 1.79769e+308
alpha() == 1.0000000000
beta() == 1.0000000000
Distribution for 10 samples:
1: 0.0936880533
2: 0.1225944894
3: 0.6443593183
4: 0.6551171649
5: 0.7313457551
6: 0.7313557977
7: 0.7590097389
8: 1.4466885214
9: 1.6434088411
10: 2.1201210996
Spécifications
Header :<random>
Espace de noms : std
gamma_distribution::gamma_distribution
Construit la distribution.
explicit gamma_distribution(result_type alpha = 1.0, result_type beta = 1.0);
explicit gamma_distribution(const param_type& parm);
Paramètres
alpha
Paramètre de distribution alpha
.
beta
Paramètre de distribution beta
.
parm
Structure de paramètre utilisée pour construire la distribution.
Notes
Condition préalable : 0.0 < alpha
et 0.0 < beta
Le premier constructeur construit un objet dont la valeur alpha
stockée contient la valeur alpha et dont la valeur beta
stockée contient la valeur beta.
Le deuxième constructeur construit un objet dont les paramètres stockés sont initialisés à partir de parm. Vous pouvez obtenir et définir les paramètres actuels d'une distribution existante en appelant la fonction membre param()
.
gamma_distribution::param_type
Stocke les paramètres de la distribution.
struct param_type {
typedef gamma_distribution<result_type> distribution_type;
param_type(result_type alpha = 1.0, result_type beta 1.0);
result_type alpha() const;
result_type beta() const;
bool operator==(const param_type& right) const;
bool operator!=(const param_type& right) const;
};
Paramètres
alpha
Paramètre de distribution alpha
.
beta
Paramètre de distribution beta
.
right
Instance param_type
à comparer.
Notes
Condition préalable : 0.0 < alpha
et 0.0 < beta
Cette structure peut être passée au constructeur de classe de la distribution au moment de l'instanciation, à la fonction membre param()
pour définir les paramètres stockés d'une distribution existante et à operator()
pour une utilisation à la place des paramètres stockés.