Partager via


ConversionsExtensionsCatalog.MapValue Méthode

Définition

Surcharges

MapValue(TransformsCatalog+ConversionTransforms, String, IDataView, DataViewSchema+Column, DataViewSchema+Column, String)

Créez un ValueMappingEstimator, qui convertit les types valeur en clés, en chargeant les clés à utiliser à partir de l’emplacement lookupMap où les keyColumn clés spécifiées et la valueColumn valeur respective.

MapValue<TInputType,TOutputType>(TransformsCatalog+ConversionTransforms, String, IEnumerable<KeyValuePair<TInputType,TOutputType[]>>, String)

Créez un ValueMappingEstimator, qui convertit les types valeur en clés, en chargeant les clés à utiliser à partir de keyValuePairs.

MapValue<TInputType,TOutputType>(TransformsCatalog+ConversionTransforms, String, IEnumerable<KeyValuePair<TInputType,TOutputType>>, String, Boolean)

Créez un ValueMappingEstimator, qui convertit les types valeur en clés, en chargeant les clés à utiliser à partir de keyValuePairs.

MapValue(TransformsCatalog+ConversionTransforms, String, IDataView, DataViewSchema+Column, DataViewSchema+Column, String)

Créez un ValueMappingEstimator, qui convertit les types valeur en clés, en chargeant les clés à utiliser à partir de l’emplacement lookupMap où les keyColumn clés spécifiées et la valueColumn valeur respective.

public static Microsoft.ML.Transforms.ValueMappingEstimator MapValue (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, Microsoft.ML.IDataView lookupMap, Microsoft.ML.DataViewSchema.Column keyColumn, Microsoft.ML.DataViewSchema.Column valueColumn, string inputColumnName = default);
static member MapValue : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * Microsoft.ML.IDataView * Microsoft.ML.DataViewSchema.Column * Microsoft.ML.DataViewSchema.Column * string -> Microsoft.ML.Transforms.ValueMappingEstimator
<Extension()>
Public Function MapValue (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, lookupMap As IDataView, keyColumn As DataViewSchema.Column, valueColumn As DataViewSchema.Column, Optional inputColumnName As String = Nothing) As ValueMappingEstimator

Paramètres

catalog
TransformsCatalog.ConversionTransforms

Catalogue de la transformation de conversion

outputColumnName
String

Nom de la colonne résultant de la transformation de inputColumnName. Les types de données peuvent être des primitives ou des vecteurs de types numériques, texte, booléens DateTimeDateTimeOffset ou DataViewRowId types.

lookupMap
IDataView

Instance de IDataView ce qui contient les colonnes et valueColumn les keyColumn colonnes.

keyColumn
DataViewSchema.Column

Colonne clé dans lookupMap.

valueColumn
DataViewSchema.Column

Colonne de valeur dans lookupMap.

inputColumnName
String

Nom de la colonne à transformer. Si la valeur est définie null, la valeur du outputColumnName fichier sera utilisée comme source. Les types de données peuvent être des primitives ou des vecteurs de types numériques, texte, booléens DateTimeDateTimeOffset ou DataViewRowId types.

Retours

Exemples

using System;
using System.Collections.Generic;
using Microsoft.ML;

namespace Samples.Dynamic
{
    public static class MapValueIdvLookup
    {
        /// This example demonstrates the use of MapValue by mapping floats to
        /// strings, looking up the mapping in an IDataView. This is useful to map
        /// types to a grouping. 
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Get a small dataset as an IEnumerable.
            var rawData = new[] {
                new DataPoint() { Price = 3.14f },
                new DataPoint() { Price = 2000f },
                new DataPoint() { Price = 1.19f },
                new DataPoint() { Price = 2.17f },
                new DataPoint() { Price = 33.784f },

            };

            // Convert to IDataView
            var data = mlContext.Data.LoadFromEnumerable(rawData);

            // Create the lookup map data IEnumerable.   
            var lookupData = new[] {
                new LookupMap { Value = 3.14f, Category = "Low" },
                new LookupMap { Value = 1.19f , Category = "Low" },
                new LookupMap { Value = 2.17f , Category = "Low" },
                new LookupMap { Value = 33.784f, Category = "Medium" },
                new LookupMap { Value = 2000f, Category = "High"}

            };

            // Convert to IDataView
            var lookupIdvMap = mlContext.Data.LoadFromEnumerable(lookupData);

            // Constructs the ValueMappingEstimator making the ML.NET pipeline
            var pipeline = mlContext.Transforms.Conversion.MapValue("PriceCategory",
                lookupIdvMap, lookupIdvMap.Schema["Value"], lookupIdvMap.Schema[
                    "Category"], "Price");

            // Fits the ValueMappingEstimator and transforms the data converting the
            // Price to PriceCategory.
            IDataView transformedData = pipeline.Fit(data).Transform(data);

            // Getting the resulting data as an IEnumerable.
            IEnumerable<TransformedData> features = mlContext.Data.CreateEnumerable<
                TransformedData>(transformedData, reuseRowObject: false);

            Console.WriteLine($" Price   PriceCategory");
            foreach (var featureRow in features)
                Console.WriteLine($"{featureRow.Price}\t\t" +
                $"{featureRow.PriceCategory}");

            // TransformedData obtained post-transformation.
            //
            // Price        PriceCategory
            // 3.14            Low
            // 2000            High
            // 1.19            Low
            // 2.17            Low
            // 33.784          Medium
        }

        // Type for the IDataView that will be serving as the map
        private class LookupMap
        {
            public float Value { get; set; }
            public string Category { get; set; }
        }

        private class DataPoint
        {
            public float Price { get; set; }
        }

        private class TransformedData : DataPoint
        {
            public string PriceCategory { get; set; }
        }
    }
}

S’applique à

MapValue<TInputType,TOutputType>(TransformsCatalog+ConversionTransforms, String, IEnumerable<KeyValuePair<TInputType,TOutputType[]>>, String)

Créez un ValueMappingEstimator, qui convertit les types valeur en clés, en chargeant les clés à utiliser à partir de keyValuePairs.

public static Microsoft.ML.Transforms.ValueMappingEstimator<TInputType,TOutputType> MapValue<TInputType,TOutputType> (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, System.Collections.Generic.IEnumerable<System.Collections.Generic.KeyValuePair<TInputType,TOutputType[]>> keyValuePairs, string inputColumnName = default);
static member MapValue : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * seq<System.Collections.Generic.KeyValuePair<'InputType, 'OutputType[]>> * string -> Microsoft.ML.Transforms.ValueMappingEstimator<'InputType, 'OutputType>
<Extension()>
Public Function MapValue(Of TInputType, TOutputType) (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, keyValuePairs As IEnumerable(Of KeyValuePair(Of TInputType, TOutputType())), Optional inputColumnName As String = Nothing) As ValueMappingEstimator(Of TInputType, TOutputType)

Paramètres de type

TInputType

Type de clé.

TOutputType

Type de valeur.

Paramètres

catalog
TransformsCatalog.ConversionTransforms

Catalogue de la transformation de conversion

outputColumnName
String

Nom de la colonne résultant de la transformation de inputColumnName. Les types de données peuvent être des primitives ou des vecteurs de type numérique, texte, booléen ou DateTimeDateTimeOffsetDataViewRowId types, comme spécifié dans le .TOutputType

keyValuePairs
IEnumerable<KeyValuePair<TInputType,TOutputType[]>>

Spécifie le mappage qui sera effectué. Les clés sont mappées aux valeurs spécifiées dans le keyValuePairs.

inputColumnName
String

Nom de la colonne à transformer. Si la valeur est définie null, la valeur du outputColumnName fichier sera utilisée comme source. Les types de données peuvent être des primitives ou des vecteurs de type numérique, texte, booléen ou DateTimeDateTimeOffsetDataViewRowId types, comme spécifié dans le .TInputType

Retours

ValueMappingEstimator<TInputType,TOutputType>

Exemples

using System;
using System.Collections.Generic;
using Microsoft.ML;

namespace Samples.Dynamic
{
    public static class MapValueToArray
    {
        /// This example demonstrates the use of MapValue by mapping strings to
        /// array values, which allows for mapping data to numeric arrays. This
        /// functionality is useful when the generated column will serve as the
        /// Features column for a trainer. Most of the trainers take a numeric
        /// vector, as the Features column. In this example, we are mapping the
        /// Timeframe data to arbitrary integer arrays.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Get a small dataset as an IEnumerable.
            var rawData = new[] {
                new DataPoint() { Timeframe = "0-4yrs" },
                new DataPoint() { Timeframe = "6-11yrs" },
                new DataPoint() { Timeframe = "12-25yrs" },
                new DataPoint() { Timeframe = "0-5yrs" },
                new DataPoint() { Timeframe = "12-25yrs" },
                new DataPoint() { Timeframe = "25+yrs" },
            };

            var data = mlContext.Data.LoadFromEnumerable(rawData);

            // Creating a list of key-value pairs to indicate the mapping between
            // the DataPoint values, and the arrays they should map to. 
            var timeframeMap = new Dictionary<string, int[]>();
            timeframeMap["0-4yrs"] = new int[] { 0, 5, 300 };
            timeframeMap["0-5yrs"] = new int[] { 0, 5, 300 };
            timeframeMap["6-11yrs"] = new int[] { 6, 11, 300 };
            timeframeMap["12-25yrs"] = new int[] { 12, 50, 300 };
            timeframeMap["25+yrs"] = new int[] { 12, 50, 300 };

            // Constructs the ValueMappingEstimator making the ML.NET pipeline.
            var pipeline = mlContext.Transforms.Conversion.MapValue("Features",
                timeframeMap, "Timeframe");

            // Fits the ValueMappingEstimator and transforms the data adding the
            // Features column.
            IDataView transformedData = pipeline.Fit(data).Transform(data);

            // Getting the resulting data as an IEnumerable.
            IEnumerable<TransformedData> featuresColumn = mlContext.Data
                .CreateEnumerable<TransformedData>(transformedData, reuseRowObject:
                false);

            Console.WriteLine($"Timeframe     Features");
            foreach (var featureRow in featuresColumn)
                Console.WriteLine($"{featureRow.Timeframe}\t\t " +
                $"{string.Join(",", featureRow.Features)}");

            // Timeframe      Features
            // 0-4yrs       0, 5, 300
            // 6-11yrs      6, 11, 300
            // 12-25yrs     12, 50, 300
            // 0-5yrs       0, 5, 300
            // 12-25yrs     12, 50,300
            // 25+yrs       12, 50, 300
        }

        public class DataPoint
        {
            public string Timeframe { get; set; }
        }

        public class TransformedData : DataPoint
        {
            public int[] Features { get; set; }
        }
    }
}

S’applique à

MapValue<TInputType,TOutputType>(TransformsCatalog+ConversionTransforms, String, IEnumerable<KeyValuePair<TInputType,TOutputType>>, String, Boolean)

Créez un ValueMappingEstimator, qui convertit les types valeur en clés, en chargeant les clés à utiliser à partir de keyValuePairs.

public static Microsoft.ML.Transforms.ValueMappingEstimator<TInputType,TOutputType> MapValue<TInputType,TOutputType> (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, System.Collections.Generic.IEnumerable<System.Collections.Generic.KeyValuePair<TInputType,TOutputType>> keyValuePairs, string inputColumnName = default, bool treatValuesAsKeyType = false);
static member MapValue : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * seq<System.Collections.Generic.KeyValuePair<'InputType, 'OutputType>> * string * bool -> Microsoft.ML.Transforms.ValueMappingEstimator<'InputType, 'OutputType>
<Extension()>
Public Function MapValue(Of TInputType, TOutputType) (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, keyValuePairs As IEnumerable(Of KeyValuePair(Of TInputType, TOutputType)), Optional inputColumnName As String = Nothing, Optional treatValuesAsKeyType As Boolean = false) As ValueMappingEstimator(Of TInputType, TOutputType)

Paramètres de type

TInputType

Type de clé.

TOutputType

Type de valeur.

Paramètres

catalog
TransformsCatalog.ConversionTransforms

Catalogue de la transformation de conversion

outputColumnName
String

Nom de la colonne résultant de la transformation de inputColumnName. Les types de données de sortie peuvent être des primitives ou des vecteurs de types numériques, texte, booléens DateTimeDateTimeOffset ou DataViewRowId types.

keyValuePairs
IEnumerable<KeyValuePair<TInputType,TOutputType>>

Spécifie le mappage qui sera effectué. Les clés sont mappées aux valeurs spécifiées dans le keyValuePairs.

inputColumnName
String

Nom de la colonne à transformer. Si la valeur est définie null, la valeur du outputColumnName fichier sera utilisée comme source. Les types de données d’entrée peuvent être des primitives ou des vecteurs de types numériques, texte, booléens DateTimeDateTimeOffset ou DataViewRowId types.

treatValuesAsKeyType
Boolean

Indique s’il faut traiter les valeurs comme une clé.

Retours

ValueMappingEstimator<TInputType,TOutputType>

Instance du ValueMappingEstimator

Exemples

using System;
using System.Collections.Generic;
using Microsoft.ML;

namespace Samples.Dynamic
{
    public static class MapValue
    {
        /// This example demonstrates the use of the ValueMappingEstimator by 
        /// mapping strings to other string values, or floats to strings. This is
        /// useful to map types to a category. 
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Get a small dataset as an IEnumerable.
            var rawData = new[] {
                new DataPoint() { Timeframe = "0-4yrs" , Score = 1 },
                new DataPoint() { Timeframe = "6-11yrs" , Score = 2 },
                new DataPoint() { Timeframe = "12-25yrs" , Score = 3 },
                new DataPoint() { Timeframe = "0-5yrs" , Score = 4 },
                new DataPoint() { Timeframe = "12-25yrs" , Score = 5 },
                new DataPoint() { Timeframe = "25+yrs" , Score = 5 },
            };

            var data = mlContext.Data.LoadFromEnumerable(rawData);

            // Construct the mapping to other strings for the Timeframe column.  
            var timeframeMap = new Dictionary<string, string>();
            timeframeMap["0-4yrs"] = "Short";
            timeframeMap["0-5yrs"] = "Short";
            timeframeMap["6-11yrs"] = "Medium";
            timeframeMap["12-25yrs"] = "Long";
            timeframeMap["25+yrs"] = "Long";

            // Construct the mapping of strings to keys(uints) for the Timeframe
            // column. 
            var timeframeKeyMap = new Dictionary<string, uint>();
            timeframeKeyMap["0-4yrs"] = 1;
            timeframeKeyMap["0-5yrs"] = 1;
            timeframeKeyMap["6-11yrs"] = 2;
            timeframeKeyMap["12-25yrs"] = 3;
            timeframeKeyMap["25+yrs"] = 3;

            // Construct the mapping of ints to strings for the Score column. 
            var scoreMap = new Dictionary<int, string>();
            scoreMap[1] = "Low";
            scoreMap[2] = "Low";
            scoreMap[3] = "Average";
            scoreMap[4] = "High";
            scoreMap[5] = "High";

            // Constructs the ML.net pipeline
            var pipeline = mlContext.Transforms.Conversion.MapValue(
                "TimeframeCategory", timeframeMap, "Timeframe").Append(mlContext.
                Transforms.Conversion.MapValue("ScoreCategory", scoreMap, "Score"))
                // on the MapValue below, the treatValuesAsKeyType is set to true.
                // The type of the Label column will be a KeyDataViewType type, 
                // and it can be used as input for trainers performing multiclass
                // classification.
                .Append(mlContext.Transforms.Conversion.MapValue("Label",
                timeframeKeyMap, "Timeframe", treatValuesAsKeyType: true));

            // Fits the pipeline to the data.
            IDataView transformedData = pipeline.Fit(data).Transform(data);

            // Getting the resulting data as an IEnumerable.
            // This will contain the newly created columns.
            IEnumerable<TransformedData> features = mlContext.Data.CreateEnumerable<
                TransformedData>(transformedData, reuseRowObject: false);

            Console.WriteLine(" Timeframe   TimeframeCategory   Label    Score   " +
                "ScoreCategory");

            foreach (var featureRow in features)
                Console.WriteLine($"{featureRow.Timeframe}\t\t" +
                    $"{featureRow.TimeframeCategory}\t\t\t{featureRow.Label}\t\t" +
                    $"{featureRow.Score}\t{featureRow.ScoreCategory}");

            // TransformedData obtained post-transformation.
            //
            //  Timeframe   TimeframeCategory   Label    Score   ScoreCategory
            // 0-4yrs         Short              1       1       Low
            // 6-11yrs        Medium             2       2       Low
            // 12-25yrs       Long               3       3       Average
            // 0-5yrs         Short              1       4       High
            // 12-25yrs       Long               3       5       High
            // 25+yrs         Long               3       5       High
        }

        private class DataPoint
        {
            public string Timeframe { get; set; }
            public int Score { get; set; }
        }

        private class TransformedData : DataPoint
        {
            public string TimeframeCategory { get; set; }
            public string ScoreCategory { get; set; }
            public uint Label { get; set; }
        }
    }
}

S’applique à