ConversionsExtensionsCatalog.MapValue Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Surcharges
MapValue(TransformsCatalog+ConversionTransforms, String, IDataView, DataViewSchema+Column, DataViewSchema+Column, String) |
Créez un ValueMappingEstimator, qui convertit les types valeur en clés, en chargeant les clés à utiliser à partir de l’emplacement |
MapValue<TInputType,TOutputType>(TransformsCatalog+ConversionTransforms, String, IEnumerable<KeyValuePair<TInputType,TOutputType[]>>, String) |
Créez un ValueMappingEstimator, qui convertit les types valeur en clés, en chargeant les clés à utiliser à partir de |
MapValue<TInputType,TOutputType>(TransformsCatalog+ConversionTransforms, String, IEnumerable<KeyValuePair<TInputType,TOutputType>>, String, Boolean) |
Créez un ValueMappingEstimator, qui convertit les types valeur en clés, en chargeant les clés à utiliser à partir de |
MapValue(TransformsCatalog+ConversionTransforms, String, IDataView, DataViewSchema+Column, DataViewSchema+Column, String)
Créez un ValueMappingEstimator, qui convertit les types valeur en clés, en chargeant les clés à utiliser à partir de l’emplacement lookupMap
où les keyColumn
clés spécifiées et la valueColumn
valeur respective.
public static Microsoft.ML.Transforms.ValueMappingEstimator MapValue (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, Microsoft.ML.IDataView lookupMap, Microsoft.ML.DataViewSchema.Column keyColumn, Microsoft.ML.DataViewSchema.Column valueColumn, string inputColumnName = default);
static member MapValue : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * Microsoft.ML.IDataView * Microsoft.ML.DataViewSchema.Column * Microsoft.ML.DataViewSchema.Column * string -> Microsoft.ML.Transforms.ValueMappingEstimator
<Extension()>
Public Function MapValue (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, lookupMap As IDataView, keyColumn As DataViewSchema.Column, valueColumn As DataViewSchema.Column, Optional inputColumnName As String = Nothing) As ValueMappingEstimator
Paramètres
Catalogue de la transformation de conversion
- outputColumnName
- String
Nom de la colonne résultant de la transformation de inputColumnName
.
Les types de données peuvent être des primitives ou des vecteurs de types numériques, texte, booléens DateTimeDateTimeOffset ou DataViewRowId types.
- lookupMap
- IDataView
Instance de IDataView ce qui contient les colonnes et valueColumn
les keyColumn
colonnes.
- keyColumn
- DataViewSchema.Column
Colonne clé dans lookupMap
.
- valueColumn
- DataViewSchema.Column
Colonne de valeur dans lookupMap
.
- inputColumnName
- String
Nom de la colonne à transformer. Si la valeur est définie null
, la valeur du outputColumnName
fichier sera utilisée comme source.
Les types de données peuvent être des primitives ou des vecteurs de types numériques, texte, booléens DateTimeDateTimeOffset ou DataViewRowId types.
Retours
Exemples
using System;
using System.Collections.Generic;
using Microsoft.ML;
namespace Samples.Dynamic
{
public static class MapValueIdvLookup
{
/// This example demonstrates the use of MapValue by mapping floats to
/// strings, looking up the mapping in an IDataView. This is useful to map
/// types to a grouping.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable.
var rawData = new[] {
new DataPoint() { Price = 3.14f },
new DataPoint() { Price = 2000f },
new DataPoint() { Price = 1.19f },
new DataPoint() { Price = 2.17f },
new DataPoint() { Price = 33.784f },
};
// Convert to IDataView
var data = mlContext.Data.LoadFromEnumerable(rawData);
// Create the lookup map data IEnumerable.
var lookupData = new[] {
new LookupMap { Value = 3.14f, Category = "Low" },
new LookupMap { Value = 1.19f , Category = "Low" },
new LookupMap { Value = 2.17f , Category = "Low" },
new LookupMap { Value = 33.784f, Category = "Medium" },
new LookupMap { Value = 2000f, Category = "High"}
};
// Convert to IDataView
var lookupIdvMap = mlContext.Data.LoadFromEnumerable(lookupData);
// Constructs the ValueMappingEstimator making the ML.NET pipeline
var pipeline = mlContext.Transforms.Conversion.MapValue("PriceCategory",
lookupIdvMap, lookupIdvMap.Schema["Value"], lookupIdvMap.Schema[
"Category"], "Price");
// Fits the ValueMappingEstimator and transforms the data converting the
// Price to PriceCategory.
IDataView transformedData = pipeline.Fit(data).Transform(data);
// Getting the resulting data as an IEnumerable.
IEnumerable<TransformedData> features = mlContext.Data.CreateEnumerable<
TransformedData>(transformedData, reuseRowObject: false);
Console.WriteLine($" Price PriceCategory");
foreach (var featureRow in features)
Console.WriteLine($"{featureRow.Price}\t\t" +
$"{featureRow.PriceCategory}");
// TransformedData obtained post-transformation.
//
// Price PriceCategory
// 3.14 Low
// 2000 High
// 1.19 Low
// 2.17 Low
// 33.784 Medium
}
// Type for the IDataView that will be serving as the map
private class LookupMap
{
public float Value { get; set; }
public string Category { get; set; }
}
private class DataPoint
{
public float Price { get; set; }
}
private class TransformedData : DataPoint
{
public string PriceCategory { get; set; }
}
}
}
S’applique à
MapValue<TInputType,TOutputType>(TransformsCatalog+ConversionTransforms, String, IEnumerable<KeyValuePair<TInputType,TOutputType[]>>, String)
Créez un ValueMappingEstimator, qui convertit les types valeur en clés, en chargeant les clés à utiliser à partir de keyValuePairs
.
public static Microsoft.ML.Transforms.ValueMappingEstimator<TInputType,TOutputType> MapValue<TInputType,TOutputType> (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, System.Collections.Generic.IEnumerable<System.Collections.Generic.KeyValuePair<TInputType,TOutputType[]>> keyValuePairs, string inputColumnName = default);
static member MapValue : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * seq<System.Collections.Generic.KeyValuePair<'InputType, 'OutputType[]>> * string -> Microsoft.ML.Transforms.ValueMappingEstimator<'InputType, 'OutputType>
<Extension()>
Public Function MapValue(Of TInputType, TOutputType) (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, keyValuePairs As IEnumerable(Of KeyValuePair(Of TInputType, TOutputType())), Optional inputColumnName As String = Nothing) As ValueMappingEstimator(Of TInputType, TOutputType)
Paramètres de type
- TInputType
Type de clé.
- TOutputType
Type de valeur.
Paramètres
Catalogue de la transformation de conversion
- outputColumnName
- String
Nom de la colonne résultant de la transformation de inputColumnName
.
Les types de données peuvent être des primitives ou des vecteurs de type numérique, texte, booléen ou DateTimeDateTimeOffsetDataViewRowId types, comme spécifié dans le .TOutputType
- keyValuePairs
- IEnumerable<KeyValuePair<TInputType,TOutputType[]>>
Spécifie le mappage qui sera effectué. Les clés sont mappées aux valeurs spécifiées dans le keyValuePairs
.
- inputColumnName
- String
Nom de la colonne à transformer. Si la valeur est définie null
, la valeur du outputColumnName
fichier sera utilisée comme source.
Les types de données peuvent être des primitives ou des vecteurs de type numérique, texte, booléen ou DateTimeDateTimeOffsetDataViewRowId types, comme spécifié dans le .TInputType
Retours
Exemples
using System;
using System.Collections.Generic;
using Microsoft.ML;
namespace Samples.Dynamic
{
public static class MapValueToArray
{
/// This example demonstrates the use of MapValue by mapping strings to
/// array values, which allows for mapping data to numeric arrays. This
/// functionality is useful when the generated column will serve as the
/// Features column for a trainer. Most of the trainers take a numeric
/// vector, as the Features column. In this example, we are mapping the
/// Timeframe data to arbitrary integer arrays.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable.
var rawData = new[] {
new DataPoint() { Timeframe = "0-4yrs" },
new DataPoint() { Timeframe = "6-11yrs" },
new DataPoint() { Timeframe = "12-25yrs" },
new DataPoint() { Timeframe = "0-5yrs" },
new DataPoint() { Timeframe = "12-25yrs" },
new DataPoint() { Timeframe = "25+yrs" },
};
var data = mlContext.Data.LoadFromEnumerable(rawData);
// Creating a list of key-value pairs to indicate the mapping between
// the DataPoint values, and the arrays they should map to.
var timeframeMap = new Dictionary<string, int[]>();
timeframeMap["0-4yrs"] = new int[] { 0, 5, 300 };
timeframeMap["0-5yrs"] = new int[] { 0, 5, 300 };
timeframeMap["6-11yrs"] = new int[] { 6, 11, 300 };
timeframeMap["12-25yrs"] = new int[] { 12, 50, 300 };
timeframeMap["25+yrs"] = new int[] { 12, 50, 300 };
// Constructs the ValueMappingEstimator making the ML.NET pipeline.
var pipeline = mlContext.Transforms.Conversion.MapValue("Features",
timeframeMap, "Timeframe");
// Fits the ValueMappingEstimator and transforms the data adding the
// Features column.
IDataView transformedData = pipeline.Fit(data).Transform(data);
// Getting the resulting data as an IEnumerable.
IEnumerable<TransformedData> featuresColumn = mlContext.Data
.CreateEnumerable<TransformedData>(transformedData, reuseRowObject:
false);
Console.WriteLine($"Timeframe Features");
foreach (var featureRow in featuresColumn)
Console.WriteLine($"{featureRow.Timeframe}\t\t " +
$"{string.Join(",", featureRow.Features)}");
// Timeframe Features
// 0-4yrs 0, 5, 300
// 6-11yrs 6, 11, 300
// 12-25yrs 12, 50, 300
// 0-5yrs 0, 5, 300
// 12-25yrs 12, 50,300
// 25+yrs 12, 50, 300
}
public class DataPoint
{
public string Timeframe { get; set; }
}
public class TransformedData : DataPoint
{
public int[] Features { get; set; }
}
}
}
S’applique à
MapValue<TInputType,TOutputType>(TransformsCatalog+ConversionTransforms, String, IEnumerable<KeyValuePair<TInputType,TOutputType>>, String, Boolean)
Créez un ValueMappingEstimator, qui convertit les types valeur en clés, en chargeant les clés à utiliser à partir de keyValuePairs
.
public static Microsoft.ML.Transforms.ValueMappingEstimator<TInputType,TOutputType> MapValue<TInputType,TOutputType> (this Microsoft.ML.TransformsCatalog.ConversionTransforms catalog, string outputColumnName, System.Collections.Generic.IEnumerable<System.Collections.Generic.KeyValuePair<TInputType,TOutputType>> keyValuePairs, string inputColumnName = default, bool treatValuesAsKeyType = false);
static member MapValue : Microsoft.ML.TransformsCatalog.ConversionTransforms * string * seq<System.Collections.Generic.KeyValuePair<'InputType, 'OutputType>> * string * bool -> Microsoft.ML.Transforms.ValueMappingEstimator<'InputType, 'OutputType>
<Extension()>
Public Function MapValue(Of TInputType, TOutputType) (catalog As TransformsCatalog.ConversionTransforms, outputColumnName As String, keyValuePairs As IEnumerable(Of KeyValuePair(Of TInputType, TOutputType)), Optional inputColumnName As String = Nothing, Optional treatValuesAsKeyType As Boolean = false) As ValueMappingEstimator(Of TInputType, TOutputType)
Paramètres de type
- TInputType
Type de clé.
- TOutputType
Type de valeur.
Paramètres
Catalogue de la transformation de conversion
- outputColumnName
- String
Nom de la colonne résultant de la transformation de inputColumnName
.
Les types de données de sortie peuvent être des primitives ou des vecteurs de types numériques, texte, booléens DateTimeDateTimeOffset ou DataViewRowId types.
- keyValuePairs
- IEnumerable<KeyValuePair<TInputType,TOutputType>>
Spécifie le mappage qui sera effectué. Les clés sont mappées aux valeurs spécifiées dans le keyValuePairs
.
- inputColumnName
- String
Nom de la colonne à transformer.
Si la valeur est définie null
, la valeur du outputColumnName
fichier sera utilisée comme source.
Les types de données d’entrée peuvent être des primitives ou des vecteurs de types numériques, texte, booléens DateTimeDateTimeOffset ou DataViewRowId types.
- treatValuesAsKeyType
- Boolean
Indique s’il faut traiter les valeurs comme une clé.
Retours
Instance du ValueMappingEstimator
Exemples
using System;
using System.Collections.Generic;
using Microsoft.ML;
namespace Samples.Dynamic
{
public static class MapValue
{
/// This example demonstrates the use of the ValueMappingEstimator by
/// mapping strings to other string values, or floats to strings. This is
/// useful to map types to a category.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Get a small dataset as an IEnumerable.
var rawData = new[] {
new DataPoint() { Timeframe = "0-4yrs" , Score = 1 },
new DataPoint() { Timeframe = "6-11yrs" , Score = 2 },
new DataPoint() { Timeframe = "12-25yrs" , Score = 3 },
new DataPoint() { Timeframe = "0-5yrs" , Score = 4 },
new DataPoint() { Timeframe = "12-25yrs" , Score = 5 },
new DataPoint() { Timeframe = "25+yrs" , Score = 5 },
};
var data = mlContext.Data.LoadFromEnumerable(rawData);
// Construct the mapping to other strings for the Timeframe column.
var timeframeMap = new Dictionary<string, string>();
timeframeMap["0-4yrs"] = "Short";
timeframeMap["0-5yrs"] = "Short";
timeframeMap["6-11yrs"] = "Medium";
timeframeMap["12-25yrs"] = "Long";
timeframeMap["25+yrs"] = "Long";
// Construct the mapping of strings to keys(uints) for the Timeframe
// column.
var timeframeKeyMap = new Dictionary<string, uint>();
timeframeKeyMap["0-4yrs"] = 1;
timeframeKeyMap["0-5yrs"] = 1;
timeframeKeyMap["6-11yrs"] = 2;
timeframeKeyMap["12-25yrs"] = 3;
timeframeKeyMap["25+yrs"] = 3;
// Construct the mapping of ints to strings for the Score column.
var scoreMap = new Dictionary<int, string>();
scoreMap[1] = "Low";
scoreMap[2] = "Low";
scoreMap[3] = "Average";
scoreMap[4] = "High";
scoreMap[5] = "High";
// Constructs the ML.net pipeline
var pipeline = mlContext.Transforms.Conversion.MapValue(
"TimeframeCategory", timeframeMap, "Timeframe").Append(mlContext.
Transforms.Conversion.MapValue("ScoreCategory", scoreMap, "Score"))
// on the MapValue below, the treatValuesAsKeyType is set to true.
// The type of the Label column will be a KeyDataViewType type,
// and it can be used as input for trainers performing multiclass
// classification.
.Append(mlContext.Transforms.Conversion.MapValue("Label",
timeframeKeyMap, "Timeframe", treatValuesAsKeyType: true));
// Fits the pipeline to the data.
IDataView transformedData = pipeline.Fit(data).Transform(data);
// Getting the resulting data as an IEnumerable.
// This will contain the newly created columns.
IEnumerable<TransformedData> features = mlContext.Data.CreateEnumerable<
TransformedData>(transformedData, reuseRowObject: false);
Console.WriteLine(" Timeframe TimeframeCategory Label Score " +
"ScoreCategory");
foreach (var featureRow in features)
Console.WriteLine($"{featureRow.Timeframe}\t\t" +
$"{featureRow.TimeframeCategory}\t\t\t{featureRow.Label}\t\t" +
$"{featureRow.Score}\t{featureRow.ScoreCategory}");
// TransformedData obtained post-transformation.
//
// Timeframe TimeframeCategory Label Score ScoreCategory
// 0-4yrs Short 1 1 Low
// 6-11yrs Medium 2 2 Low
// 12-25yrs Long 3 3 Average
// 0-5yrs Short 1 4 High
// 12-25yrs Long 3 5 High
// 25+yrs Long 3 5 High
}
private class DataPoint
{
public string Timeframe { get; set; }
public int Score { get; set; }
}
private class TransformedData : DataPoint
{
public string TimeframeCategory { get; set; }
public string ScoreCategory { get; set; }
public uint Label { get; set; }
}
}
}