ModelOperationsCatalog.Load Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Surcharges
Load(Stream, DataViewSchema) |
Chargez le modèle et son schéma d’entrée à partir d’un flux. |
Load(String, DataViewSchema) |
Chargez le modèle et son schéma d’entrée à partir d’un fichier. |
Load(Stream, DataViewSchema)
Chargez le modèle et son schéma d’entrée à partir d’un flux.
public Microsoft.ML.ITransformer Load (System.IO.Stream stream, out Microsoft.ML.DataViewSchema inputSchema);
member this.Load : System.IO.Stream * DataViewSchema -> Microsoft.ML.ITransformer
Public Function Load (stream As Stream, ByRef inputSchema As DataViewSchema) As ITransformer
Paramètres
- stream
- Stream
Flux lisible et recherché à partir duquel charger.
- inputSchema
- DataViewSchema
Contient le schéma d’entrée du modèle. Si le modèle a été enregistré sans description de l’entrée, il n’y aura aucun schéma d’entrée. Dans ce cas, cela peut être null
.
Retours
Modèle chargé.
Exemples
using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
namespace Samples.Dynamic.ModelOperations
{
public class SaveLoadModel
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Generate sample data.
var data = new List<Data>()
{
new Data() { Value="abc" }
};
// Convert data to IDataView.
var dataView = mlContext.Data.LoadFromEnumerable(data);
var inputColumnName = nameof(Data.Value);
var outputColumnName = nameof(Transformation.Key);
// Transform.
ITransformer model = mlContext.Transforms.Conversion
.MapValueToKey(outputColumnName, inputColumnName).Fit(dataView);
// Save model.
mlContext.Model.Save(model, dataView.Schema, "model.zip");
// Load model.
using (var file = File.OpenRead("model.zip"))
model = mlContext.Model.Load(file, out DataViewSchema schema);
// Create a prediction engine from the model for feeding new data.
var engine = mlContext.Model
.CreatePredictionEngine<Data, Transformation>(model);
var transformation = engine.Predict(new Data() { Value = "abc" });
// Print transformation to console.
Console.WriteLine("Value: {0}\t Key:{1}", transformation.Value,
transformation.Key);
// Value: abc Key:1
}
private class Data
{
public string Value { get; set; }
}
private class Transformation
{
public string Value { get; set; }
public uint Key { get; set; }
}
}
}
S’applique à
Load(String, DataViewSchema)
Chargez le modèle et son schéma d’entrée à partir d’un fichier.
public Microsoft.ML.ITransformer Load (string filePath, out Microsoft.ML.DataViewSchema inputSchema);
member this.Load : string * DataViewSchema -> Microsoft.ML.ITransformer
Public Function Load (filePath As String, ByRef inputSchema As DataViewSchema) As ITransformer
Paramètres
- filePath
- String
Chemin d’accès à un fichier à partir duquel le modèle doit être lu.
- inputSchema
- DataViewSchema
Contient le schéma d’entrée du modèle. Si le modèle a été enregistré sans description de l’entrée, il n’y aura aucun schéma d’entrée. Dans ce cas, cela peut être null
.
Retours
Modèle chargé.
Exemples
using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
namespace Samples.Dynamic.ModelOperations
{
public class SaveLoadModelFile
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Generate sample data.
var data = new List<Data>()
{
new Data() { Value="abc" }
};
// Convert data to IDataView.
var dataView = mlContext.Data.LoadFromEnumerable(data);
var inputColumnName = nameof(Data.Value);
var outputColumnName = nameof(Transformation.Key);
// Transform.
ITransformer model = mlContext.Transforms.Conversion
.MapValueToKey(outputColumnName, inputColumnName).Fit(dataView);
// Save model.
mlContext.Model.Save(model, dataView.Schema, "model.zip");
// Load model.
model = mlContext.Model.Load("model.zip", out DataViewSchema schema);
// Create a prediction engine from the model for feeding new data.
var engine = mlContext.Model
.CreatePredictionEngine<Data, Transformation>(model);
var transformation = engine.Predict(new Data() { Value = "abc" });
// Print transformation to console.
Console.WriteLine("Value: {0}\t Key:{1}", transformation.Value,
transformation.Key);
// Value: abc Key:1
}
private class Data
{
public string Value { get; set; }
}
private class Transformation
{
public string Value { get; set; }
public uint Key { get; set; }
}
}
}