Math.Atan2(Double, Double) Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Retourne l'angle dont la tangente est le quotient de deux nombres spécifiés.
public:
static double Atan2(double y, double x);
public static double Atan2 (double y, double x);
static member Atan2 : double * double -> double
Public Shared Function Atan2 (y As Double, x As Double) As Double
Paramètres
- y
- Double
Coordonnée y d'un point.
- x
- Double
Coordonnée x d'un point.
Retours
Angle, θ, mesuré en radians, tel que tan(θ) = y
/ x
, où (x
, y
) est un point dans le plan cartésien. Observez ce qui suit :
Pour (
x
,y
) dans le quadrant 1, 0 < θ < π/2.Pour (
x
,y
) dans le quadrant 2, π/2 < θ ≤ π.Pour (
x
,y
) dans le quadrant 3, -π ≤ θ < -π/2.Pour (
x
,y
) dans le quadrant 4, -π/2 < θ < 0.
La valeur de retour des points situés aux limites des quadrants est la suivante :
Si y est égal à 0 et si x n'est pas négatif, alors θ = 0.
Si y est égal à 0 et si x est négatif, alors θ = π.
Si y est positif et x est égal à 0, alors θ = π/2.
Si y est négatif et si x est égal à 0, alors θ = -π/2.
Si y est égal à 0 et si x est égal à 0, alors θ = 0.
Si x
ou y
est NaN, ou si x
et y
sont PositiveInfinity ou NegativeInfinity, la méthode retourne NaN.
Exemples
L’exemple suivant montre comment calculer l’arctangente d’un angle et d’un vecteur. La valeur résultante est affichée dans la console.
// This example demonstrates Math.Atan()
// Math.Atan2()
// Math.Tan()
using namespace System;
int main()
{
double x = 1.0;
double y = 2.0;
double angle;
double radians;
double result;
// Calculate the tangent of 30 degrees.
angle = 30;
radians = angle * (Math::PI / 180);
result = Math::Tan( radians );
Console::WriteLine( "The tangent of 30 degrees is {0}.", result );
// Calculate the arctangent of the previous tangent.
radians = Math::Atan( result );
angle = radians * (180 / Math::PI);
Console::WriteLine( "The previous tangent is equivalent to {0} degrees.", angle );
// Calculate the arctangent of an angle.
String^ line1 = "{0}The arctangent of the angle formed by the x-axis and ";
String^ line2 = "a vector to point ({0},{1}) is {2}, ";
String^ line3 = "which is equivalent to {0} degrees.";
radians = Math::Atan2( y, x );
angle = radians * (180 / Math::PI);
Console::WriteLine( line1, Environment::NewLine );
Console::WriteLine( line2, x, y, radians );
Console::WriteLine( line3, angle );
}
/*
This example produces the following results:
The tangent of 30 degrees is 0.577350269189626.
The previous tangent is equivalent to 30 degrees.
The arctangent of the angle formed by the x-axis and
a vector to point (1,2) is 1.10714871779409,
which is equivalent to 63.434948822922 degrees.
*/
// This example demonstrates Math.Atan()
// Math.Atan2()
// Math.Tan()
using System;
class Sample
{
public static void Main()
{
double x = 1.0;
double y = 2.0;
double angle;
double radians;
double result;
// Calculate the tangent of 30 degrees.
angle = 30;
radians = angle * (Math.PI/180);
result = Math.Tan(radians);
Console.WriteLine("The tangent of 30 degrees is {0}.", result);
// Calculate the arctangent of the previous tangent.
radians = Math.Atan(result);
angle = radians * (180/Math.PI);
Console.WriteLine("The previous tangent is equivalent to {0} degrees.", angle);
// Calculate the arctangent of an angle.
String line1 = "{0}The arctangent of the angle formed by the x-axis and ";
String line2 = "a vector to point ({0},{1}) is {2}, ";
String line3 = "which is equivalent to {0} degrees.";
radians = Math.Atan2(y, x);
angle = radians * (180/Math.PI);
Console.WriteLine(line1, Environment.NewLine);
Console.WriteLine(line2, x, y, radians);
Console.WriteLine(line3, angle);
}
}
/*
This example produces the following results:
The tangent of 30 degrees is 0.577350269189626.
The previous tangent is equivalent to 30 degrees.
The arctangent of the angle formed by the x-axis and
a vector to point (1,2) is 1.10714871779409,
which is equivalent to 63.434948822922 degrees.
*/
// This example demonstrates Math.Atan()
// Math.Atan2()
// Math.Tan()
// Functions 'atan', 'atan2', and 'tan' may be used instead.
open System
[<EntryPoint>]
let main _ =
let x = 1.
let y = 2.
// Calculate the tangent of 30 degrees.
let angle = 30.
let radians = angle * (Math.PI / 180.)
let result = Math.Tan radians
printfn $"The tangent of 30 degrees is {result}."
// Calculate the arctangent of the previous tangent.
let radians = Math.Atan result
let angle = radians * (180. / Math.PI)
printfn $"The previous tangent is equivalent to {angle} degrees."
// Calculate the arctangent of an angle.
let radians = Math.Atan2(y, x)
let angle = radians * (180. / Math.PI)
printfn
$"""The arctangent of the angle formed by the x-axis and
a vector to point ({x},{y}) is {radians},
which is equivalent to {angle} degrees."""
0
//This example produces the following results:
// The tangent of 30 degrees is 0.577350269189626.
// The previous tangent is equivalent to 30 degrees.
//
// The arctangent of the angle formed by the x-axis and
// a vector to point (1,2) is 1.10714871779409,
// which is equivalent to 63.434948822922 degrees.
' This example demonstrates Math.Atan()
' Math.Atan2()
' Math.Tan()
Class Sample
Public Shared Sub Main()
Dim x As Double = 1.0
Dim y As Double = 2.0
Dim angle As Double
Dim radians As Double
Dim result As Double
' Calculate the tangent of 30 degrees.
angle = 30
radians = angle *(Math.PI / 180)
result = Math.Tan(radians)
Console.WriteLine("The tangent of 30 degrees is {0}.", result)
' Calculate the arctangent of the previous tangent.
radians = Math.Atan(result)
angle = radians *(180 / Math.PI)
Console.WriteLine("The previous tangent is equivalent to {0} degrees.", angle)
' Calculate the arctangent of an angle.
Dim line1 As [String] = "{0}The arctangent of the angle formed by the x-axis and "
Dim line2 As [String] = "a vector to point ({0},{1}) is {2}, "
Dim line3 As [String] = "which is equivalent to {0} degrees."
radians = Math.Atan2(y, x)
angle = radians *(180 / Math.PI)
Console.WriteLine(line1, Environment.NewLine)
Console.WriteLine(line2, x, y, radians)
Console.WriteLine(line3, angle)
End Sub
End Class
'
'This example produces the following results:
'
'The tangent of 30 degrees is 0.577350269189626.
'The previous tangent is equivalent to 30 degrees.
'
'The arctangent of the angle formed by the x-axis and
'a vector to point (1,2) is 1.10714871779409,
'which is equivalent to 63.434948822922 degrees.
'
Remarques
La valeur de retour est l’angle dans le plan cartésien formé par l’axe x, et un vecteur commençant à partir de l’origine, (0,0), et se terminant au point, (x,y).
Cette méthode appelle le runtime C sous-jacent, et le résultat exact ou la plage d’entrée valide peut différer d’un système d’exploitation ou d’une architecture à l’autre.