Math.Atan(Double) Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Retourne l'angle dont la tangente est le nombre spécifié.
public:
static double Atan(double d);
public static double Atan (double d);
static member Atan : double -> double
Public Shared Function Atan (d As Double) As Double
Paramètres
- d
- Double
Nombre représentant une tangente.
Retours
Angle θ mesuré en radians, tel que -π/2 ≤ θ ≤ π/2.
- ou -
NaN si d
est égal à NaN, -π/2 arrondi à la double précision (-1,5707963267949) si d
est égal à NegativeInfinity, ou π/2 arrondi à la double précision (1,5707963267949) si d
est égal à PositiveInfinity.
Exemples
L’exemple suivant montre comment calculer l’arctangent d’une valeur et l’afficher sur la console.
// This example demonstrates Math.Atan()
// Math.Atan2()
// Math.Tan()
using namespace System;
int main()
{
double x = 1.0;
double y = 2.0;
double angle;
double radians;
double result;
// Calculate the tangent of 30 degrees.
angle = 30;
radians = angle * (Math::PI / 180);
result = Math::Tan( radians );
Console::WriteLine( "The tangent of 30 degrees is {0}.", result );
// Calculate the arctangent of the previous tangent.
radians = Math::Atan( result );
angle = radians * (180 / Math::PI);
Console::WriteLine( "The previous tangent is equivalent to {0} degrees.", angle );
// Calculate the arctangent of an angle.
String^ line1 = "{0}The arctangent of the angle formed by the x-axis and ";
String^ line2 = "a vector to point ({0},{1}) is {2}, ";
String^ line3 = "which is equivalent to {0} degrees.";
radians = Math::Atan2( y, x );
angle = radians * (180 / Math::PI);
Console::WriteLine( line1, Environment::NewLine );
Console::WriteLine( line2, x, y, radians );
Console::WriteLine( line3, angle );
}
/*
This example produces the following results:
The tangent of 30 degrees is 0.577350269189626.
The previous tangent is equivalent to 30 degrees.
The arctangent of the angle formed by the x-axis and
a vector to point (1,2) is 1.10714871779409,
which is equivalent to 63.434948822922 degrees.
*/
// This example demonstrates Math.Atan()
// Math.Atan2()
// Math.Tan()
using System;
class Sample
{
public static void Main()
{
double x = 1.0;
double y = 2.0;
double angle;
double radians;
double result;
// Calculate the tangent of 30 degrees.
angle = 30;
radians = angle * (Math.PI/180);
result = Math.Tan(radians);
Console.WriteLine("The tangent of 30 degrees is {0}.", result);
// Calculate the arctangent of the previous tangent.
radians = Math.Atan(result);
angle = radians * (180/Math.PI);
Console.WriteLine("The previous tangent is equivalent to {0} degrees.", angle);
// Calculate the arctangent of an angle.
String line1 = "{0}The arctangent of the angle formed by the x-axis and ";
String line2 = "a vector to point ({0},{1}) is {2}, ";
String line3 = "which is equivalent to {0} degrees.";
radians = Math.Atan2(y, x);
angle = radians * (180/Math.PI);
Console.WriteLine(line1, Environment.NewLine);
Console.WriteLine(line2, x, y, radians);
Console.WriteLine(line3, angle);
}
}
/*
This example produces the following results:
The tangent of 30 degrees is 0.577350269189626.
The previous tangent is equivalent to 30 degrees.
The arctangent of the angle formed by the x-axis and
a vector to point (1,2) is 1.10714871779409,
which is equivalent to 63.434948822922 degrees.
*/
// This example demonstrates Math.Atan()
// Math.Atan2()
// Math.Tan()
// Functions 'atan', 'atan2', and 'tan' may be used instead.
open System
[<EntryPoint>]
let main _ =
let x = 1.
let y = 2.
// Calculate the tangent of 30 degrees.
let angle = 30.
let radians = angle * (Math.PI / 180.)
let result = Math.Tan radians
printfn $"The tangent of 30 degrees is {result}."
// Calculate the arctangent of the previous tangent.
let radians = Math.Atan result
let angle = radians * (180. / Math.PI)
printfn $"The previous tangent is equivalent to {angle} degrees."
// Calculate the arctangent of an angle.
let radians = Math.Atan2(y, x)
let angle = radians * (180. / Math.PI)
printfn
$"""The arctangent of the angle formed by the x-axis and
a vector to point ({x},{y}) is {radians},
which is equivalent to {angle} degrees."""
0
//This example produces the following results:
// The tangent of 30 degrees is 0.577350269189626.
// The previous tangent is equivalent to 30 degrees.
//
// The arctangent of the angle formed by the x-axis and
// a vector to point (1,2) is 1.10714871779409,
// which is equivalent to 63.434948822922 degrees.
' This example demonstrates Math.Atan()
' Math.Atan2()
' Math.Tan()
Class Sample
Public Shared Sub Main()
Dim x As Double = 1.0
Dim y As Double = 2.0
Dim angle As Double
Dim radians As Double
Dim result As Double
' Calculate the tangent of 30 degrees.
angle = 30
radians = angle *(Math.PI / 180)
result = Math.Tan(radians)
Console.WriteLine("The tangent of 30 degrees is {0}.", result)
' Calculate the arctangent of the previous tangent.
radians = Math.Atan(result)
angle = radians *(180 / Math.PI)
Console.WriteLine("The previous tangent is equivalent to {0} degrees.", angle)
' Calculate the arctangent of an angle.
Dim line1 As [String] = "{0}The arctangent of the angle formed by the x-axis and "
Dim line2 As [String] = "a vector to point ({0},{1}) is {2}, "
Dim line3 As [String] = "which is equivalent to {0} degrees."
radians = Math.Atan2(y, x)
angle = radians *(180 / Math.PI)
Console.WriteLine(line1, Environment.NewLine)
Console.WriteLine(line2, x, y, radians)
Console.WriteLine(line3, angle)
End Sub
End Class
'
'This example produces the following results:
'
'The tangent of 30 degrees is 0.577350269189626.
'The previous tangent is equivalent to 30 degrees.
'
'The arctangent of the angle formed by the x-axis and
'a vector to point (1,2) is 1.10714871779409,
'which is equivalent to 63.434948822922 degrees.
'
Remarques
Une valeur de retour positive représente un angle dans le sens inverse des aiguilles d’une montre à partir de l’axe x ; une valeur de retour négative représente un angle dans le sens des aiguilles d’une montre.
Multipliez la valeur de retour par 180/Math.PI pour convertir de radians en degrés.
Cette méthode appelle le runtime C sous-jacent, et le résultat exact ou la plage d’entrée valide peut différer d’un système d’exploitation ou d’une architecture à l’autre.