Math.SinCos(Double) Méthode
Définition
Important
Certaines informations portent sur la préversion du produit qui est susceptible d’être en grande partie modifiée avant sa publication. Microsoft exclut toute garantie, expresse ou implicite, concernant les informations fournies ici.
Retourne le sinus et le cosinus de l’angle spécifié.
public:
static ValueTuple<double, double> SinCos(double x);
public static (double Sin, double Cos) SinCos (double x);
static member SinCos : double -> ValueTuple<double, double>
Public Shared Function SinCos (x As Double) As ValueTuple(Of Double, Double)
Paramètres
- x
- Double
Angle, mesuré en radians.
Retours
Sinus et cosinus de x
. Si x
est égal à NaN, à NegativeInfinity ou à PositiveInfinity, cette méthode retourne NaN.
Exemples
L’exemple suivant utilise SinCos pour évaluer certaines identités trigonométriques pour les angles sélectionnés.
// Example for the trigonometric Math.Sin( double )
// and Math.Cos( double ) methods.
using System;
class SinCos
{
public static void Main()
{
Console.WriteLine(
"This example of trigonometric " +
"Math.Sin( double ), Math.Cos( double ), and Math.SinCos( double )\n" +
"generates the following output.\n" );
Console.WriteLine(
"Convert selected values for X to radians \n" +
"and evaluate these trigonometric identities:" );
Console.WriteLine( " sin^2(X) + cos^2(X) == 1\n" +
" sin(2 * X) == 2 * sin(X) * cos(X)" );
Console.WriteLine( " cos(2 * X) == cos^2(X) - sin^2(X)" );
Console.WriteLine( " cos(2 * X) == cos^2(X) - sin^2(X)" );
UseSineCosine(15.0);
UseSineCosine(30.0);
UseSineCosine(45.0);
Console.WriteLine(
"\nConvert selected values for X and Y to radians \n" +
"and evaluate these trigonometric identities:" );
Console.WriteLine( " sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)" );
Console.WriteLine( " cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)" );
UseTwoAngles(15.0, 30.0);
UseTwoAngles(30.0, 45.0);
Console.WriteLine(
"\nWhen you have calls to sin(X) and cos(X) they \n" +
"can be replaced with a single call to sincos(x):" );
UseCombinedSineCosine(15.0);
UseCombinedSineCosine(30.0);
UseCombinedSineCosine(45.0);
}
// Evaluate trigonometric identities with a given angle.
static void UseCombinedSineCosine(double degrees)
{
double angle = Math.PI * degrees / 180.0;
(double sinAngle, double cosAngle) = Math.SinCos(angle);
// Evaluate sin^2(X) + cos^2(X) == 1.
Console.WriteLine(
"\n Math.SinCos({0} deg) == ({1:E16}, {2:E16})",
degrees, sinAngle, cosAngle);
Console.WriteLine(
"(double sin, double cos) = Math.SinCos({0} deg)",
degrees );
Console.WriteLine(
"sin^2 + cos^2 == {0:E16}",
sinAngle * sinAngle + cosAngle * cosAngle );
}
// Evaluate trigonometric identities with a given angle.
static void UseSineCosine(double degrees)
{
double angle = Math.PI * degrees / 180.0;
double sinAngle = Math.Sin(angle);
double cosAngle = Math.Cos(angle);
// Evaluate sin^2(X) + cos^2(X) == 1.
Console.WriteLine(
"\n Math.Sin({0} deg) == {1:E16}\n" +
" Math.Cos({0} deg) == {2:E16}",
degrees, Math.Sin(angle), Math.Cos(angle) );
Console.WriteLine(
"(Math.Sin({0} deg))^2 + (Math.Cos({0} deg))^2 == {1:E16}",
degrees, sinAngle * sinAngle + cosAngle * cosAngle );
// Evaluate sin(2 * X) == 2 * sin(X) * cos(X).
Console.WriteLine(
" Math.Sin({0} deg) == {1:E16}",
2.0 * degrees, Math.Sin(2.0 * angle) );
Console.WriteLine(
" 2 * Math.Sin({0} deg) * Math.Cos({0} deg) == {1:E16}",
degrees, 2.0 * sinAngle * cosAngle );
// Evaluate cos(2 * X) == cos^2(X) - sin^2(X).
Console.WriteLine(
" Math.Cos({0} deg) == {1:E16}",
2.0 * degrees, Math.Cos(2.0 * angle) );
Console.WriteLine(
"(Math.Cos({0} deg))^2 - (Math.Sin({0} deg))^2 == {1:E16}",
degrees, cosAngle * cosAngle - sinAngle * sinAngle );
}
// Evaluate trigonometric identities that are functions of two angles.
static void UseTwoAngles(double degreesX, double degreesY)
{
double angleX = Math.PI * degreesX / 180.0;
double angleY = Math.PI * degreesY / 180.0;
// Evaluate sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y).
Console.WriteLine(
"\n Math.Sin({0} deg) * Math.Cos({1} deg) +\n" +
" Math.Cos({0} deg) * Math.Sin({1} deg) == {2:E16}",
degreesX, degreesY, Math.Sin(angleX) * Math.Cos(angleY) +
Math.Cos(angleX) * Math.Sin(angleY));
Console.WriteLine(
" Math.Sin({0} deg) == {1:E16}",
degreesX + degreesY, Math.Sin(angleX + angleY));
// Evaluate cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y).
Console.WriteLine(
" Math.Cos({0} deg) * Math.Cos({1} deg) -\n" +
" Math.Sin({0} deg) * Math.Sin({1} deg) == {2:E16}",
degreesX, degreesY, Math.Cos(angleX) * Math.Cos(angleY) -
Math.Sin(angleX) * Math.Sin(angleY));
Console.WriteLine(
" Math.Cos({0} deg) == {1:E16}",
degreesX + degreesY, Math.Cos(angleX + angleY));
}
}
/*
This example of trigonometric Math.Sin( double ) and Math.Cos( double )
generates the following output.
Convert selected values for X to radians
and evaluate these trigonometric identities:
sin^2(X) + cos^2(X) == 1
sin(2 * X) == 2 * sin(X) * cos(X)
cos(2 * X) == cos^2(X) - sin^2(X)
Math.Sin(15 deg) == 2.5881904510252074E-001
Math.Cos(15 deg) == 9.6592582628906831E-001
(Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 == 1.0000000000000000E+000
Math.Sin(30 deg) == 4.9999999999999994E-001
2 * Math.Sin(15 deg) * Math.Cos(15 deg) == 4.9999999999999994E-001
Math.Cos(30 deg) == 8.6602540378443871E-001
(Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 == 8.6602540378443871E-001
Math.Sin(30 deg) == 4.9999999999999994E-001
Math.Cos(30 deg) == 8.6602540378443871E-001
(Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 == 1.0000000000000000E+000
Math.Sin(60 deg) == 8.6602540378443860E-001
2 * Math.Sin(30 deg) * Math.Cos(30 deg) == 8.6602540378443860E-001
Math.Cos(60 deg) == 5.0000000000000011E-001
(Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 == 5.0000000000000022E-001
Math.Sin(45 deg) == 7.0710678118654746E-001
Math.Cos(45 deg) == 7.0710678118654757E-001
(Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 == 1.0000000000000000E+000
Math.Sin(90 deg) == 1.0000000000000000E+000
2 * Math.Sin(45 deg) * Math.Cos(45 deg) == 1.0000000000000000E+000
Math.Cos(90 deg) == 6.1230317691118863E-017
(Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 == 2.2204460492503131E-016
Convert selected values for X and Y to radians
and evaluate these trigonometric identities:
sin(X + Y) == sin(X) * cos(Y) + cos(X) * sin(Y)
cos(X + Y) == cos(X) * cos(Y) - sin(X) * sin(Y)
Math.Sin(15 deg) * Math.Cos(30 deg) +
Math.Cos(15 deg) * Math.Sin(30 deg) == 7.0710678118654746E-001
Math.Sin(45 deg) == 7.0710678118654746E-001
Math.Cos(15 deg) * Math.Cos(30 deg) -
Math.Sin(15 deg) * Math.Sin(30 deg) == 7.0710678118654757E-001
Math.Cos(45 deg) == 7.0710678118654757E-001
Math.Sin(30 deg) * Math.Cos(45 deg) +
Math.Cos(30 deg) * Math.Sin(45 deg) == 9.6592582628906831E-001
Math.Sin(75 deg) == 9.6592582628906820E-001
Math.Cos(30 deg) * Math.Cos(45 deg) -
Math.Sin(30 deg) * Math.Sin(45 deg) == 2.5881904510252085E-001
Math.Cos(75 deg) == 2.5881904510252096E-001
*/
// Example for the trigonometric Math.Sin( double )
// and Math.Cos( double ) methods.
// In F#, the sin and cos functions may be used instead.
open System
// Evaluate trigonometric identities with a given angle.
let useSineCosine degrees =
let angle = Math.PI * degrees / 180.
let sinAngle = Math.Sin angle
let cosAngle = Math.Cos angle
// Evaluate sin^2(X) + cos^2(X) = 1.
printfn $"""
Math.Sin({degrees} deg) = {Math.Sin angle:E16}
Math.Cos({degrees} deg) = {Math.Cos angle:E16}"""
printfn $"(Math.Sin({degrees} deg))^2 + (Math.Cos({degrees} deg))^2 = {sinAngle * sinAngle + cosAngle * cosAngle:E16}"
// Evaluate sin(2 * X) = 2 * sin(X) * cos(X).
printfn $" Math.Sin({2. * degrees} deg) = {Math.Sin(2. * angle):E16}"
printfn $" 2 * Math.Sin({degrees} deg) * Math.Cos({degrees} deg) = {2. * sinAngle * cosAngle:E16}"
// Evaluate cos(2 * X) = cos^2(X) - sin^2(X).
printfn $" Math.Cos({2. * degrees} deg) = {Math.Cos(2. * angle):E16}"
printfn $"(Math.Cos({degrees} deg))^2 - (Math.Sin({degrees} deg))^2 = {cosAngle * cosAngle - sinAngle * sinAngle:E16}"
// Evaluate trigonometric identities that are functions of two angles.
let useTwoAngles degreesX degreesY =
let angleX = Math.PI * degreesX / 180.
let angleY = Math.PI * degreesY / 180.
// Evaluate sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y).
printfn $"""
Math.Sin({degreesX} deg) * Math.Cos({degreesY} deg)
Math.Cos({degreesX} deg) * Math.Sin({degreesY} deg) = {Math.Sin angleX * Math.Cos angleY + Math.Cos angleX * Math.Sin angleY:E16}"""
printfn $" Math.Sin({degreesX + degreesY} deg) = {Math.Sin(angleX + angleY):E16}"
// Evaluate cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y).
printfn
$""" Math.Cos({degreesX} deg) * Math.Cos({degreesY} deg) -
Math.Sin({degreesX} deg) * Math.Sin({degreesY} deg) = {Math.Cos angleX * Math.Cos angleY - Math.Sin angleX * Math.Sin angleY:E16}"""
printfn $" Math.Cos({degreesX + degreesY} deg) = {Math.Cos(angleX + angleY):E16}"
// Evaluate trigonometric identities with a given angle.
let useCombinedSineCosine degrees =
let angle = Math.PI * degrees / 180.
let struct(sinAngle, cosAngle) = Math.SinCos angle
// Evaluate sin^2(X) + cos^2(X) = 1.
printfn $"\n Math.SinCos({degrees} deg) = ({sinAngle:E16}, {cosAngle:E16})"
printfn $"(double sin, double cos) = Math.SinCos({degrees} deg)"
printfn $"sin^2 + cos^2 = {sinAngle * sinAngle + cosAngle * cosAngle:E16}"
printfn
"""This example of trigonometric
Math.Sin( double ), Math.Cos( double ), and Math.SinCos( double )
generates the following output.
Convert selected values for X to radians
and evaluate these trigonometric identities:
sin^2(X) + cos^2(X) = 1\n sin(2 * X) = 2 * sin(X) * cos(X)
cos(2 * X) = cos^2(X) - sin^2(X)
cos(2 * X) = cos^2(X) - sin^2(X)
"""
useSineCosine 15.
useSineCosine 30.
useSineCosine 45.
printfn """
Convert selected values for X and Y to radians
and evaluate these trigonometric identities:
sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y)
cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y)
"""
useTwoAngles 15. 30.
useTwoAngles 30. 45.
printfn """
When you have calls to sin(X) and cos(X) they
can be replaced with a single call to sincos(x):"""
useCombinedSineCosine 15.
useCombinedSineCosine 30.
useCombinedSineCosine 45.
// This example of trigonometric Math.Sin( double ) and Math.Cos( double )
// generates the following output.
//
// Convert selected values for X to radians
// and evaluate these trigonometric identities:
// sin^2(X) + cos^2(X) = 1
// sin(2 * X) = 2 * sin(X) * cos(X)
// cos(2 * X) = cos^2(X) - sin^2(X)
//
// Math.Sin(15 deg) = 2.5881904510252074E-001
// Math.Cos(15 deg) = 9.6592582628906831E-001
// (Math.Sin(15 deg))^2 + (Math.Cos(15 deg))^2 = 1.0000000000000000E+000
// Math.Sin(30 deg) = 4.9999999999999994E-001
// 2 * Math.Sin(15 deg) * Math.Cos(15 deg) = 4.9999999999999994E-001
// Math.Cos(30 deg) = 8.6602540378443871E-001
// (Math.Cos(15 deg))^2 - (Math.Sin(15 deg))^2 = 8.6602540378443871E-001
//
// Math.Sin(30 deg) = 4.9999999999999994E-001
// Math.Cos(30 deg) = 8.6602540378443871E-001
// (Math.Sin(30 deg))^2 + (Math.Cos(30 deg))^2 = 1.0000000000000000E+000
// Math.Sin(60 deg) = 8.6602540378443860E-001
// 2 * Math.Sin(30 deg) * Math.Cos(30 deg) = 8.6602540378443860E-001
// Math.Cos(60 deg) = 5.0000000000000011E-001
// (Math.Cos(30 deg))^2 - (Math.Sin(30 deg))^2 = 5.0000000000000022E-001
//
// Math.Sin(45 deg) = 7.0710678118654746E-001
// Math.Cos(45 deg) = 7.0710678118654757E-001
// (Math.Sin(45 deg))^2 + (Math.Cos(45 deg))^2 = 1.0000000000000000E+000
// Math.Sin(90 deg) = 1.0000000000000000E+000
// 2 * Math.Sin(45 deg) * Math.Cos(45 deg) = 1.0000000000000000E+000
// Math.Cos(90 deg) = 6.1230317691118863E-017
// (Math.Cos(45 deg))^2 - (Math.Sin(45 deg))^2 = 2.2204460492503131E-016
//
// Convert selected values for X and Y to radians
// and evaluate these trigonometric identities:
// sin(X + Y) = sin(X) * cos(Y) + cos(X) * sin(Y)
// cos(X + Y) = cos(X) * cos(Y) - sin(X) * sin(Y)
//
// Math.Sin(15 deg) * Math.Cos(30 deg) +
// Math.Cos(15 deg) * Math.Sin(30 deg) = 7.0710678118654746E-001
// Math.Sin(45 deg) = 7.0710678118654746E-001
// Math.Cos(15 deg) * Math.Cos(30 deg) -
// Math.Sin(15 deg) * Math.Sin(30 deg) = 7.0710678118654757E-001
// Math.Cos(45 deg) = 7.0710678118654757E-001
//
// Math.Sin(30 deg) * Math.Cos(45 deg) +
// Math.Cos(30 deg) * Math.Sin(45 deg) = 9.6592582628906831E-001
// Math.Sin(75 deg) = 9.6592582628906820E-001
// Math.Cos(30 deg) * Math.Cos(45 deg) -
// Math.Sin(30 deg) * Math.Sin(45 deg) = 2.5881904510252085E-001
// Math.Cos(75 deg) = 2.5881904510252096E-001
Remarques
L’angle, x
, doit être en radians. Multipliez par Math.PI/180 pour convertir les degrés en radians.
Cette méthode appelle le runtime C sous-jacent, et le résultat exact ou la plage d’entrée valide peut différer d’un système d’exploitation ou d’une architecture à l’autre.