fisher_f_distribution Class
The latest version of this topic can be found at fisher_f_distribution Class.
Generates a Fisher F distribution.
Syntax
class fisher_f_distribution
{
public: // types
typedef RealType result_type;
struct param_type; // constructor and reset functions
explicit fisher_f_distribution(RealType m = 1.0, RealType n = 1.0);
explicit fisher_f_distribution(const param_type& parm);
void reset();
// generating functions
template <class URNG>
result_type operator()(URNG& gen);
template <class URNG>
result_type operator()(URNG& gen, const param_type& parm);
// property functions
RealType m() const;
RealType n() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
};
Parameters
RealType
The floating-point result type, defaults to double
. For possible types, see <random>.
Remarks
The template class describes a distribution that produces values of a user-specified integral type, or type double
if none is provided, distributed according to the Fisher's F-Distribution. The following table links to articles about individual members.
fisher_f_distribution::fisher_f_distribution | fisher_f_distribution::m |
fisher_f_distribution::param |
fisher_f_distribution::operator() |
fisher_f_distribution::n |
fisher_f_distribution::param_type |
The property functions m()
and n()
return the values for the stored distribution parameters m
and n
respectively.
For more information about distribution classes and their members, see <random>.
For detailed information about the F- distribution, see the Wolfram MathWorld article F-Distribution.
Example
// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>
void test(const double m, const double n, const int s) {
// uncomment to use a non-deterministic seed
// std::random_device rd;
// std::mt19937 gen(rd());
std::mt19937 gen(1701);
std::fisher_f_distribution<> distr(m, n);
std::cout << std::endl;
std::cout << "min() == " << distr.min() << std::endl;
std::cout << "max() == " << distr.max() << std::endl;
std::cout << "m() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.m() << std::endl;
std::cout << "n() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.n() << std::endl;
// generate the distribution as a histogram
std::map<double, int> histogram;
for (int i = 0; i < s; ++i) {
++histogram[distr(gen)];
}
// print results
std::cout << "Distribution for " << s << " samples:" << std::endl;
int counter = 0;
for (const auto& elem : histogram) {
std::cout << std::fixed << std::setw(11) << ++counter << ": "
<< std::setw(14) << std::setprecision(10) << elem.first << std::endl;
}
std::cout << std::endl;
}
int main()
{
double m_dist = 1;
double n_dist = 1;
int samples = 10;
std::cout << "Use CTRL-Z to bypass data entry and run using default values." << std::endl;
std::cout << "Enter a floating point value for the \'m\' distribution parameter (must be greater than zero): ";
std::cin >> m_dist;
std::cout << "Enter a floating point value for the \'n\' distribution parameter (must be greater than zero): ";
std::cin >> n_dist;
std::cout << "Enter an integer value for the sample count: ";
std::cin >> samples;
test(m_dist, n_dist, samples);
}
Output
First run:
Enter a floating point value for the 'm' distribution parameter (must be greater than zero): 1
Enter a floating point value for the 'n' distribution parameter (must be greater than zero): 1
Enter an integer value for the sample count: 10
min
() == 0
max
() == 1.79769e+308
m
() == 1.0000000000
n
() == 1.0000000000
Distribution for 10 samples:
1: 0.0204569549
2: 0.0221376644
3: 0.0297234962
4: 0.1600937252
5: 0.2775342196
6: 0.3950701700
7: 0.8363200295
8: 0.9512500702
9: 2.7844815974
10: 3.4320929653
Second run:
Enter a floating point value for the 'm' distribution parameter (must be greater than zero): 1
Enter a floating point value for the 'n' distribution parameter (must be greater than zero): .1
Enter an integer value for the sample count: 10
min
() == 0
max
() == 1.79769e+308
m
() == 1.0000000000
n
() == 0.1000000000
Distribution for 10 samples:
1: 0.0977725649
2: 0.5304122767
3: 4.9468518084
4: 25.1012074939
5: 48.8082121613
6: 401.8075539377
7: 8199.5947873699
8: 226492.6855335717
9: 2782062.6639740225
10: 20829747131.7185860000
Third run:
Enter a floating point value for the 'm' distribution parameter (must be greater than zero): .1
Enter a floating point value for the 'n' distribution parameter (must be greater than zero): 1
Enter an integer value for the sample count: 10
min
() == 0
max
() == 1.79769e+308
m
() == 0.1000000000
n
() == 1.0000000000
Distribution for 10 samples:
1: 0.0000000000
2: 0.0000000000
3: 0.0000000000
4: 0.0000000000
5: 0.0000000033
6: 0.0000073975
7: 0.0000703800
8: 0.0280427735
9: 0.2660239949
10: 3.4363333954
Requirements
Header: <random>
Namespace: std
fisher_f_distribution::fisher_f_distribution
Constructs the distribution.
explicit fisher_f_distribution(RealType m = 1.0, RealType n = 1.0);
explicit fisher_f_distribution(const param_type& parm);
Parameters
m
The m
distribution parameter.
n
The n
distribution parameter.
parm
The parameter structure used to construct the distribution.
Remarks
Precondition: 0.0 < m
and 0.0 < n
The first constructor constructs an object whose stored m
value holds the value m
and whose stored n
value holds the value n
.
The second constructor constructs an object whose stored parameters are initialized from parm
. You can obtain and set the current parameters of an existing distribution by calling the param()
member function.
fisher_f_distribution::param_type
Stores the parameters of the distribution.
struct param_type {
typedef fisher_f_distribution<RealType> distribution_type;
param_type(RealType m = 1.0, RealType n = 1.0);
RealType m() const;
RealType n() const;
......
bool operator==(const param_type& right) const;
bool operator!=(const param_type& right) const;
};
Parameters
See parent topic extreme_value_distribution Class.
Remarks
Precondition: 0.0 < m
and 0.0 < n
This structure can be passed to the distribution's class constructor at instantiation, to the param()
member function to set the stored parameters of an existing distribution, and to operator()
to be used in place of the stored parameters.