Activer PyTorch avec DirectML sur Windows
PyTorch avec DirectML offre aux développeurs un moyen facile d’essayer les modèles d’IA les plus récents et les plus performants sur leur ordinateur Windows. Vous pouvez télécharger PyTorch avec DirectML en installant le package PyPi torch-directml. Une fois configuré, vous pouvez commencer avec nos échantillons ou utiliser l’AI Toolkit pour VS Code.
Vérifier votre version de Windows
Le package torch-directml sur Windows natif fonctionne à partir de Windows 10, version 1709 (build 16299 ou ultérieure). Vous pouvez vérifier votre numéro de version de build en exécutant winver
via la commande Run (touche de logo Windows + touche R).
Rechercher les mises à jour du pilote GPU
Vérifiez que la version la plus récente du pilote graphique est installée. Sélectionnez Rechercher les mises à jour dans la section Windows Update de l’application Paramètres.
Configurer Torch-DirectML
Nous vous recommandons de configurer un environnement Python virtuel dans Windows. Il existe de nombreux outils que vous pouvez utiliser pour configurer un environnement Python virtuel. Pour ces instructions, nous allons utiliser Miniconda d’Anaconda. Le reste de ce guide d’installation part du principe que vous utilisez un environnement Miniconda.
Configurer un environnement Python
Téléchargez et installez le Windows Installer Miniconda sur votre système. Vous trouverez des instructions supplémentaires pour l’installation sur le site d’Anaconda. Une fois Miniconda installé, créez un environnement à l’aide de Python nommé pytdml et activez-le à l’aide des commandes suivantes.
conda create --name pytdml -y
conda activate pytdml
Installer PyTorch et Torch-DirectML
Remarque
Le package torch-directml prend en charge PyTorch 2.2
Tout ce dont vous avez besoin pour démarrer est d’installer la dernière version de torch-directml en exécutant la commande suivante :
pip install torch-directml
Vérification et création d’appareils
Une fois que vous avez installé le package torch-directml, vous pouvez vérifier qu’il s’exécute correctement en ajoutant deux tenseurs. Commencez par démarrer une session Python interactive et importez Torch avec les lignes suivantes :
import torch
import torch_directml
dml = torch_directml.device()
La version actuelle de torch-directml est mappée au back-end Torch « PrivateUse1 ». L’API torch_directml.device() est un wrapper pratique pour envoyer vos tenseurs à l’appareil DirectML.
Avec l’appareil DirectML créé, vous pouvez maintenant définir deux tenseurs simples : un tenseur contenant un 1 et un autre contenant un 2. Placez les tenseurs sur l’appareil « dml ».
tensor1 = torch.tensor([1]).to(dml) # Note that dml is a variable, not a string!
tensor2 = torch.tensor([2]).to(dml)
Ajoutez les tenseurs ensemble et imprimez les résultats.
dml_algebra = tensor1 + tensor2
dml_algebra.item()
Vous devez voir le nombre 3 en sortie, comme dans l’exemple ci-dessous.
>>> import torch
>>> tensor1 = torch.tensor([1]).to(dml)
>>> tensor2 = torch.tensor([2]).to(dml)
>>> dml_algebra = tensor1 + tensor2
>>> dml_algebra.item()
3
Exemples et retour d’expérience PyTorch avec DirectML
Consultez nos échantillons pour voir plus d’utilisations de PyTorch avec DirectML. Si vous rencontrez des problèmes ou si vous avez des retours à nous faire sur le package PyTorch avec DirectML, contactez notre équipe ici.