Condividi tramite


Databricks Runtime 15.0 per Machine Learning (EoS)

Nota

Il supporto per questa versione di Databricks Runtime è terminato. Per la data di fine del supporto, vedere Cronologia di fine del supporto. Per tutte le versioni supportate di Databricks Runtime, vedere Versioni e compatibilità delle note sulla versione di Databricks Runtime.

Databricks Runtime 15.0 per Machine Learning è un ambiente pronto all’uso ottimizzato per l'esecuzione di processi di apprendimento automatico e data science basato su Databricks Runtime 15.0 (EoS). Databricks Runtime per Machine Learning contiene molte di queste librerie, tra cui TensorFlow, PyTorch, Keras e XGBoost. Databricks Runtime ML include AutoML, uno strumento per eseguire automaticamente il training delle pipeline di Machine Learning. Azure Databricks supporta il training di Deep Learning distribuito tramite HorovodRunner e il pacchetto .

Miglioramenti e nuove funzionalità

Databricks Runtime 15.0 ML è basato su Databricks Runtime 15.0. Per informazioni sulle novità di Databricks Runtime 15.0, tra cui Apache Spark MLlib e SparkR, vedere le note sulla versione di Databricks Runtime 15.0 (EoS).

Modifiche di rilievo

La CLI legacy di Databricks non è più installata per impostazione predefinita

In Databricks Runtime 14.3 LTS ML e versioni precedenti, poiché la versione preinstallata di MLflow richiedeva la CLI legacy di Databricks (databricks/databricks-cli), è stata installata automaticamente in $PATH. Databricks Runtime 15.0 ML include MLflow versione 2.10.2, che non richiede la CLI legacy.

A partire da Databricks Runtime 15.0 ML, la CLI legacy di Databricks non viene più installata automaticamente in $PATH. Si tratta di una modifica che causa un'interruzione per gli utenti che dipendono dalla CLI legacy installata nel runtime. Comandi come %sh databricks ... non funzionano più in Databricks Runtime 15.0 ML e versioni successive.

Per continuare a usare la CLI legacy di Databricks da un notebook, installarla come cluster o libreria di notebook. La nuova CLI di Databricks (databricks/cli) è disponibile dal terminale Web. Per altre informazioni, vedere Usare il terminale Web e la CLI di Databricks.

MLeap non è più disponibile a partire da Databricks Runtime 15.0 ML

MLeap non è più disponibile in Databricks Runtime 15.0 ML e versioni successive. Per creare un pacchetto di modelli per la distribuzione in framework basati su JVM, Databricks consiglia di usare il formato ONNX.

Deprecazione di Horovod e HorovodRunner

Horovod e HorovodRunner sono ora deprecati. Per l'apprendimento avanzato distribuito, Databricks consiglia di utilizzare TorchDistributor per il training distribuito con PyTorch o l'API tf.distribute.Strategy per il training distribuito con TensorFlow. Horovod e HorovodRunner sono preinstallati in Databricks Runtime 15.0 ML, ma verranno rimossi nella prossima versione principale di Databricks Runtime ML.

Nota

horovod.spark non supporta pyarrow versioni 11.0 e successive (vedere il relativo problema con GitHub). Databricks Runtime 15.0 ML include pyarrow versione 14.0.1. Per usare horovod.spark databricks Runtime 15.0 ML o versione successiva, è necessario installare manualmente pyarrow, specificando una versione successiva alla 11.0.

Ambiente di sistema

L'ambiente di sistema in Databricks Runtime 15.0 ML differisce da Databricks Runtime 15.0 come indicato di seguito:

  • Per i cluster GPU, Databricks Runtime ML include le librerie GPU NVIDIA seguenti:
    • CUDA 12.1
    • cuDNN 8.9.0.131-1
    • NCCL 2.17.1
    • TensorRT 8.6.1.6-1

Librerie

Le sezioni seguenti elencano le librerie incluse in Databricks Runtime 15.0 ML che differiscono da quelle incluse in Databricks Runtime 15.0.

Contenuto della sezione:

Librerie di livello superiore

Databricks Runtime 15.0 ML include le librerie di livello superiore seguenti:

Librerie Python

Databricks Runtime 15.0 ML usa virtualenv per la gestione dei pacchetti Python e include molti dei pacchetti ML più diffusi.

Oltre ai pacchetti specificati nelle sezioni seguenti, Databricks Runtime 15.0 ML include anche i pacchetti seguenti:

  • hyperopt 0.2.7+db4
  • sparkdl 3.0.0_db1
  • automl 1.25.0

Per riprodurre l'ambiente Python di Databricks Runtime ML nell'ambiente virtuale Python locale, scaricare il file requirements-15.0.txt ed eseguire pip install -r requirements-15.0.txt. Questo comando installa tutte le librerie open source usate da Databricks Runtime ML, ma non installa librerie sviluppate da Databricks, ad esempio databricks-automl, databricks-feature-store o il fork di Databricks di hyperopt.

Librerie Python nei cluster CPU

Library Versione Library Versione Library Versione
absl-py 1.0.0 accelerate 0.25.0 aiohttp 3.8.5
aiohttp-cors 0.7.0 aiosignal 1.2.0 anyio 3.5.0
argon2-cffi 21.3.0 argon2-cffi-bindings 21.2.0 astor 0.8.1
asttoken 2.0.5 astunparse 1.6.3 async-timeout 4.0.2
attrs 22.1.0 audioread 3.0.1 azure-core 1.30.1
azure-cosmos 4.3.1 azure-storage-blob 12.19.0 azure-storage-file-datalake 12.14.0
backcall 0.2.0 bcrypt 3.2.0 beautifulsoup4 4.12.2
black 23.3.0 bleach 4.1.0 blessed 1.20.0
blinker 1.4 blis 0.7.11 boto3 1.34.39
botocore 1.34.39 cachetools 5.3.3 catalogue 2.0.10
category-encoders 2.6.3 certifi 2023.7.22 cffi 1.15.1
chardet 4.0.0 charset-normalizer 2.0.4 click 8.0.4
cloudpathlib 0.16.0 cloudpickle 2.2.1 cmdstanpy 1.2.1
a colori 0.5.6 serv 0.1.2 confection 0.1.4
configparser 5.2.0 contourpy 1.0.5 cryptography 41.0.3
cycler 0.11.0 cymem 2.0.8 Cython 0.29.32
dacite 1.8.1 databricks-automl-runtime 0.2.21 databricks-feature-engineering 0.3.0
databricks-sdk 0.20.0 dataclasses-json 0.6.4 datasets 2.16.1
dbl-tempo 0.1.26 dbus-python 1.2.18 debugpy 1.6.7
decorator 5.1.1 deepspeed 0.13.1 defusedxml 0.7.1
dill 0.3.6 diskcache 5.6.3 distlib 0.3.8
dm-tree 0.1.8 entrypoints 0.4 evaluate 0.4.1
executing 0.8.3 facet-overview 1.1.1 Farama-Notifications 0.0.4
fastjsonschema 2.19.1 fasttext 0.9.2 filelock 3.9.0
Flask 2.2.5 flatbuffers 23.5.26 fonttools 4.25.0
frozenlist 1.3.3 fsspec 2023.5.0 future 0.18.3
gast 0.4.0 gitdb 4.0.11 GitPython 3.1.27
google-api-core 2.17.1 google-auth 2.21.0 google-auth-oauthlib 1.0.0
google-cloud-core 2.4.1 google-cloud-storage 2.11.0 google-crc32c 1.5.0
google-pasta 0.2.0 google-resumable-media 2.7.0 googleapis-common-protos 1.62.0
gpustat 1.1.1 greenlet 2.0.1 grpcio 1.60.0
grpcio-status 1.60.0 gunicorn 20.1.0 gviz-api 1.10.0
gymnasium 0.28.1 h11 0.14.0 h5py 3.9.0
hjson 3.1.0 holidays 0,38 horovod 0.28.1+db1
htmlmin 0.1.12 httpcore 1.0.4 httplib2 0.20.2
httpx 0.27.0 huggingface-hub 0.20.2 idna 3.4
ImageHash 4.3.1 imageio 2.31.1 imbalanced-learn 0.11.0
importlib-metadata 6.0.0 importlib_resources 6.1.2 ipyflow-core 0.0.198
ipykernel 6.25.1 ipython 8.15.0 ipython-genutils 0.2.0
ipywidgets 8.0.4 isodate 0.6.1 itsdangerous 2.0.1
jax jumpy 1.0.0 jedi 0.18.1 jeepney 0.7.1
Jinja2 3.1.2 jmespath 0.10.0 joblib 1.2.0
joblibspark 0.5.1 jsonpatch 1.33 jsonpointer 2.4
jsonschema 4.17.3 jupyter-server 1.23.4 jupyter_client 7.4.9
jupyter_core 5.3.0 jupyterlab-pygments 0.1.2 jupyterlab-widgets 3.0.5
keras 2.15.0 keyring 23.5.0 kiwisolver 1.4.4
langchain 0.1.3 langchain-community 0.0.20 langchain-core 0.1.23
langcodes 3.3.0 langsmith 0.0.87 launchpadlib 1.10.16
lazr.restfulclient 0.14.4 lazr.uri 1.0.6 lazy_loader 0.2
libclang 16.0.6 librosa 0.10.1 lightgbm 4.2.0
llvmlite 0.40.0 lxml 4.9.2 lz4 4.3.2
Mako 1.2.0 Markdown 3.4.1 markdown-it-py 2.2.0
MarkupSafe 2.1.1 marshmallow 3.21.1 matplotlib 3.7.2
matplotlib-inline 0.1.6 mdurl 0.1.0 mistune 0.8.4
ml-dtypes 0.2.0 mlflow-skinny 2.10.2 more-itertools 8.10.0
mpmath 1.3.0 msgpack 1.0.8 multidict 6.0.2
multimethod 1.11.2 multiprocess 0.70.14 murmurhash 1.0.10
mypy-extensions 0.4.3 nbclassic 0.5.5 nbclient 0.5.13
nbconvert 6.5.4 nbformat 5.7.0 nest-asyncio 1.5.6
networkx 3.1 ninja 1.11.1.1 nltk 3.8.1
notebook 6.5.4 notebook_shim 0.2.2 numba 0.57.1
numpy 1.23.5 nvidia-ml-py 12.535.133 oauthlib 3.2.0
openai 1.9.0 opencensus 0.11.4 opencensus-context 0.1.3
opt-einsum 3.3.0 packaging 23.2 pandas 2.0.3
pandocfilters 1.5.0 paramiko 2.9.2 parso 0.8.3
pathspec 0.10.3 patsy 0.5.3 petastorm 0.12.1
pexpect 4.8.0 phik 0.12.4 pickleshare 0.7.5
Pillow 9.4.0 pip 23.2.1 platformdirs 3.10.0
plotly 5.9.0 pmdarima 2.0.4 pooch 1.8.1
preshed 3.0.9 prometheus-client 0.14.1 prompt-toolkit 3.0.36
prophet 1.1.5 protobuf 4.24.1 psutil 5.9.0
psycopg2 2.9.3 ptyprocess 0.7.0 pure-eval 0.2.2
py-cpuinfo 8.0.0 py-spy 0.3.14 pyarrow 14.0.1
pyarrow-hotfix 0,6 pyasn1 0.4.8 pyasn1-modules 0.2.8
pybind11 2.11.1 pyccolo 0.0.52 pycparser 2.21
pydantic 1.10.6 Pygments 2.15.1 PyGObject 3.42.1
PyJWT 2.3.0 PyNaCl 1.5.0 pynvml 11.5.0
pyodbc 4.0.38 pyparsing 3.0.9 pyrsistent 0.18.0
pytesseract 0.3.10 python-dateutil 2.8.2 python-editor 1.0.4
python-lsp-jsonrpc 1.1.1 pytz 2022.7 PyWavelets 1.4.1
PyYAML 6.0 pyzmq 23.2.0 ray 2.9.3
regex 2022.7.9 requests 2.31.0 requests-oauthlib 1.3.1
responses 0.13.3 rich 13.7.1 rsa 4.9
s3transfer 0.10.0 safetensors 0.3.2 scikit-image 0.20.0
scikit-learn 1.3.0 scipy 1.11.1 seaborn 0.12.2
SecretStorage 3.3.1 Send2Trash 1.8.0 sentence-transformers 2.2.2
sentencepiece 0.1.99 setuptools 68.0.0 shap 0.44.0
simplejson 3.17.6 six 1.16.0 slicer 0.0.7
smart-open 5.2.1 smmap 5.0.0 sniffio 1.2.0
soundfile 0.12.1 soupsieve 2.4 soxr 0.3.7
spacy 3.7.2 spacy-legacy 3.0.12 spacy-logger 1.0.5
spark-tensorflow-distributor 1.0.0 SQLAlchemy 1.4.39 sqlparse 0.4.2
srsly 2.4.8 ssh-import-id 5.11 stack-data 0.2.0
stanio 0.3.0 statsmodels 0.14.0 sympy 1.11.1
tangled-up-in-unicode 0.2.0 tenacity 8.2.2 tensorboard 2.15.1
tensorboard-data-server 0.7.2 tensorboard-plugin-profile 2.15.0 tensorboardX 2.6.2.2
tensorflow-cpu 2.15.0 tensorflow-estimator 2.15.0 tensorflow-io-gcs-filesystem 0.36.0
termcolor 2.4.0 terminado 0.17.1 thinc 8.2.3
threadpoolctl 2.2.0 tifffile 2021.7.2 tiktoken 0.5.2
tinycss2 1.2.1 tokenize-rt 4.2.1 tokenizers 0.15.0
Torch 2.1.2+cpu torcheval 0.0.7 torchvision 0.16.2+cpu
tornado 6.3.2 tqdm 4.65.0 traitlets 5.7.1
transformers 4.36.2 typeguard 2.13.3 typer 0.9.0
typing-inspect 0.9.0 typing_extensions 4.7.1 tzdata 2022.1
ujson 5.4.0 unattended-upgrades 0.1 urllib3 1.26.16
virtualenv 20.21.0 visions 0.7.5 wadllib 1.3.6
wasabi 1.1.2 wcwidth 0.2.5 weasel 0.3.4
webencodings 0.5.1 websocket-client 0.58.0 Werkzeug 2.2.3
wheel 0.38.4 widgetsnbextension 4.0.5 wordcloud 1.9.3
wrapt 1.14.1 xgboost 2.0.3 xxhash 3.4.1
yarl 1.8.1 ydata-profiling 4.5.1 zipp 3.11.0

Librerie Python nei cluster GPU

Library Versione Library Versione Library Versione
absl-py 1.0.0 accelerate 0.25.0 aiohttp 3.8.5
aiohttp-cors 0.7.0 aiosignal 1.2.0 anyio 3.5.0
argon2-cffi 21.3.0 argon2-cffi-bindings 21.2.0 astor 0.8.1
asttoken 2.0.5 astunparse 1.6.3 async-timeout 4.0.2
attrs 22.1.0 audioread 3.0.1 azure-core 1.30.1
azure-cosmos 4.3.1 azure-storage-blob 12.19.0 azure-storage-file-datalake 12.14.0
backcall 0.2.0 bcrypt 3.2.0 beautifulsoup4 4.12.2
black 23.3.0 bleach 4.1.0 blessed 1.20.0
blinker 1.4 blis 0.7.11 boto3 1.34.39
botocore 1.34.39 cachetools 5.3.3 catalogue 2.0.10
category-encoders 2.6.3 certifi 2023.7.22 cffi 1.15.1
chardet 4.0.0 charset-normalizer 2.0.4 click 8.0.4
cloudpathlib 0.16.0 cloudpickle 2.2.1 cmdstanpy 1.2.1
a colori 0.5.6 serv 0.1.2 confection 0.1.4
configparser 5.2.0 contourpy 1.0.5 cryptography 41.0.3
cycler 0.11.0 cymem 2.0.8 Cython 0.29.32
dacite 1.8.1 databricks-automl-runtime 0.2.21 databricks-feature-engineering 0.3.0
databricks-sdk 0.20.0 dataclasses-json 0.6.4 datasets 2.16.1
dbl-tempo 0.1.26 dbus-python 1.2.18 debugpy 1.6.7
decorator 5.1.1 deepspeed 0.13.1 defusedxml 0.7.1
dill 0.3.6 diskcache 5.6.3 distlib 0.3.8
dm-tree 0.1.8 einops 0.7.0 entrypoints 0.4
evaluate 0.4.1 executing 0.8.3 facet-overview 1.1.1
Farama-Notifications 0.0.4 fastjsonschema 2.19.1 fasttext 0.9.2
filelock 3.9.0 flash-attn 2.5.0 Flask 2.2.5
flatbuffers 23.5.26 fonttools 4.25.0 frozenlist 1.3.3
fsspec 2023.5.0 future 0.18.3 gast 0.4.0
gitdb 4.0.11 GitPython 3.1.27 google-api-core 2.17.1
google-auth 2.21.0 google-auth-oauthlib 1.0.0 google-cloud-core 2.4.1
google-cloud-storage 2.11.0 google-crc32c 1.5.0 google-pasta 0.2.0
google-resumable-media 2.7.0 googleapis-common-protos 1.62.0 gpustat 1.1.1
greenlet 2.0.1 grpcio 1.60.0 grpcio-status 1.60.0
gunicorn 20.1.0 gviz-api 1.10.0 gymnasium 0.28.1
h11 0.14.0 h5py 3.9.0 hjson 3.1.0
holidays 0,38 horovod 0.28.1+db1 htmlmin 0.1.12
httpcore 1.0.4 httplib2 0.20.2 httpx 0.27.0
huggingface-hub 0.20.2 idna 3.4 ImageHash 4.3.1
imageio 2.31.1 imbalanced-learn 0.11.0 importlib-metadata 6.0.0
importlib_resources 6.1.2 ipyflow-core 0.0.198 ipykernel 6.25.1
ipython 8.15.0 ipython-genutils 0.2.0 ipywidgets 8.0.4
isodate 0.6.1 itsdangerous 2.0.1 jax jumpy 1.0.0
jedi 0.18.1 jeepney 0.7.1 Jinja2 3.1.2
jmespath 0.10.0 joblib 1.2.0 joblibspark 0.5.1
jsonpatch 1.33 jsonpointer 2.4 jsonschema 4.17.3
jupyter-server 1.23.4 jupyter_client 7.4.9 jupyter_core 5.3.0
jupyterlab-pygments 0.1.2 jupyterlab-widgets 3.0.5 keras 2.15.0
keyring 23.5.0 kiwisolver 1.4.4 langchain 0.1.3
langchain-community 0.0.20 langchain-core 0.1.23 langcodes 3.3.0
langsmith 0.0.87 launchpadlib 1.10.16 lazr.restfulclient 0.14.4
lazr.uri 1.0.6 lazy_loader 0.2 libclang 16.0.6
librosa 0.10.1 lightgbm 4.2.0 llvmlite 0.40.0
lxml 4.9.2 lz4 4.3.2 Mako 1.2.0
Markdown 3.4.1 markdown-it-py 2.2.0 MarkupSafe 2.1.1
marshmallow 3.21.1 matplotlib 3.7.2 matplotlib-inline 0.1.6
mdurl 0.1.0 mistune 0.8.4 ml-dtypes 0.2.0
mlflow-skinny 2.10.2 more-itertools 8.10.0 mpmath 1.3.0
msgpack 1.0.8 multidict 6.0.2 multimethod 1.11.2
multiprocess 0.70.14 murmurhash 1.0.10 mypy-extensions 0.4.3
nbclassic 0.5.5 nbclient 0.5.13 nbconvert 6.5.4
nbformat 5.7.0 nest-asyncio 1.5.6 networkx 3.1
ninja 1.11.1.1 nltk 3.8.1 notebook 6.5.4
notebook_shim 0.2.2 numba 0.57.1 numpy 1.23.5
nvidia-ml-py 12.535.133 oauthlib 3.2.0 openai 1.9.0
opencensus 0.11.4 opencensus-context 0.1.3 opt-einsum 3.3.0
packaging 23.2 pandas 2.0.3 pandocfilters 1.5.0
paramiko 2.9.2 parso 0.8.3 pathspec 0.10.3
patsy 0.5.3 petastorm 0.12.1 pexpect 4.8.0
phik 0.12.4 pickleshare 0.7.5 Pillow 9.4.0
pip 23.2.1 platformdirs 3.10.0 plotly 5.9.0
pmdarima 2.0.4 pooch 1.8.1 preshed 3.0.9
prompt-toolkit 3.0.36 prophet 1.1.5 protobuf 4.24.1
psutil 5.9.0 psycopg2 2.9.3 ptyprocess 0.7.0
pure-eval 0.2.2 py-cpuinfo 8.0.0 py-spy 0.3.14
pyarrow 14.0.1 pyarrow-hotfix 0,6 pyasn1 0.4.8
pyasn1-modules 0.2.8 pybind11 2.11.1 pyccolo 0.0.52
pycparser 2.21 pydantic 1.10.6 Pygments 2.15.1
PyGObject 3.42.1 PyJWT 2.3.0 PyNaCl 1.5.0
pynvml 11.5.0 pyodbc 4.0.38 pyparsing 3.0.9
pyrsistent 0.18.0 pytesseract 0.3.10 python-dateutil 2.8.2
python-editor 1.0.4 python-lsp-jsonrpc 1.1.1 pytz 2022.7
PyWavelets 1.4.1 PyYAML 6.0 pyzmq 23.2.0
ray 2.9.3 regex 2022.7.9 requests 2.31.0
requests-oauthlib 1.3.1 responses 0.13.3 rich 13.7.1
rsa 4.9 s3transfer 0.10.0 safetensors 0.3.2
scikit-image 0.20.0 scikit-learn 1.3.0 scipy 1.11.1
seaborn 0.12.2 SecretStorage 3.3.1 Send2Trash 1.8.0
sentence-transformers 2.2.2 sentencepiece 0.1.99 setuptools 68.0.0
shap 0.44.0 simplejson 3.17.6 six 1.16.0
slicer 0.0.7 smart-open 5.2.1 smmap 5.0.0
sniffio 1.2.0 soundfile 0.12.1 soupsieve 2.4
soxr 0.3.7 spacy 3.7.2 spacy-legacy 3.0.12
spacy-logger 1.0.5 spark-tensorflow-distributor 1.0.0 SQLAlchemy 1.4.39
sqlparse 0.4.2 srsly 2.4.8 ssh-import-id 5.11
stack-data 0.2.0 stanio 0.3.0 statsmodels 0.14.0
sympy 1.11.1 tangled-up-in-unicode 0.2.0 tenacity 8.2.2
tensorboard 2.15.1 tensorboard-data-server 0.7.2 tensorboard-plugin-profile 2.15.0
tensorboardX 2.6.2.2 tensorflow 2.15.0 tensorflow-estimator 2.15.0
tensorflow-io-gcs-filesystem 0.36.0 termcolor 2.4.0 terminado 0.17.1
thinc 8.2.3 threadpoolctl 2.2.0 tifffile 2021.7.2
tiktoken 0.5.2 tinycss2 1.2.1 tokenize-rt 4.2.1
tokenizers 0.15.0 Torch 2.1.2+cu121 torcheval 0.0.7
torchvision 0.16.2+cu121 tornado 6.3.2 tqdm 4.65.0
traitlets 5.7.1 transformers 4.36.2 triton 2.1.0
typeguard 2.13.3 typer 0.9.0 typing-inspect 0.9.0
typing_extensions 4.7.1 tzdata 2022.1 ujson 5.4.0
unattended-upgrades 0.1 urllib3 1.26.16 virtualenv 20.21.0
visions 0.7.5 wadllib 1.3.6 wasabi 1.1.2
wcwidth 0.2.5 weasel 0.3.4 webencodings 0.5.1
websocket-client 0.58.0 Werkzeug 2.2.3 wheel 0.38.4
widgetsnbextension 4.0.5 wordcloud 1.9.3 wrapt 1.14.1
xgboost 2.0.3 xxhash 3.4.1 yarl 1.8.1
ydata-profiling 4.5.1 zipp 3.11.0

Librerie R

Le librerie R sono identiche alle librerie R in Databricks Runtime 15.0.

Librerie Java e Scala (cluster Scala 2.12)

Oltre alle librerie Java e Scala in Databricks Runtime 15.0, Databricks Runtime 15.0 ML contiene i file JAR seguenti:

Cluster CPU

ID gruppo ID artefatto Versione
com.typesafe.akka akka-actor_2.12 2.5.23
ml.dmlc xgboost4j-spark_2.12 1.7.3
ml.dmlc xgboost4j_2.12 1.7.3
org.graphframes graphframes_2.12 0.8.2-db2-spark3.4
org.mlflow mlflow-client 2.10.2
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0

Cluster GPU

ID gruppo ID artefatto Versione
com.typesafe.akka akka-actor_2.12 2.5.23
ml.dmlc xgboost4j-gpu_2.12 1.7.3
ml.dmlc xgboost4j-spark-gpu_2.12 1.7.3
org.graphframes graphframes_2.12 0.8.2-db2-spark3.4
org.mlflow mlflow-client 2.10.2
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0