Condividi tramite


Databricks Runtime 7.4 per ML (EoS)

Nota

Il supporto per questa versione di Databricks Runtime è terminato. Per la data di fine del supporto, vedere Cronologia di fine del supporto. Per tutte le versioni supportate di Databricks Runtime, vedere Versioni e compatibilità delle note sulla versione di Databricks Runtime.

Databricks ha rilasciato questa versione a novembre 2020.

Databricks Runtime 7.4 per Machine Learning è un ambiente pronto all’uso ottimizzato per l'esecuzione di processi di apprendimento automatico e data science basato su Databricks Runtime 7.4 (EoS). Databricks Runtime ML contiene molte di queste popolari librerie per l’apprendimento automatico, tra cui TensorFlow, PyTorch e XGBoost. È inoltre supportato il training distribuito con Horovod.

Per altre informazioni, incluse le istruzioni per la creazione di un cluster di Databricks Runtime ML, vedere IA e Machine Learning in Databricks.

Nuove caratteristiche e modifiche importanti

Databricks Runtime 7.4 ML è basato su Databricks Runtime 7.4. Per informazioni sulle novità di Databricks Runtime 7.4, tra cui Apache Spark MLlib e SparkR, vedere le note sulla versione di Databricks Runtime 7.4 (EoS).

Modifiche principali all'ambiente Scala di Databricks Runtime ML

XGBoost viene aggiornato alla versione 1.2.0. Questa versione consente a XGBoost di usare GPU nei cluster Spark per migliorare la velocità di training. Esistono diverse altre modifiche, tra cui alcune modifiche che causano un'interruzione. Per altre informazioni, vedere le note sulla versione di XGBoost 1.2.0.

In particolare, nei cluster CPU, xgboost4j_2.12 e xgboost4j-spark_2.12 vengono aggiornati da 1.0.0 a 1.2.0. Nei cluster GPU questi pacchetti vengono rimossi e vengono installati la versione 1.2.0 di xgboost4j-gpu_2.12 e xgboost4j-spark-gpu_2.12.

GraphFrames viene aggiornato da 0.8.0-db2-spark3.0 a 0.8.1-db1-spark3.0.

Modifiche principali all'ambiente Python di Databricks Runtime ML

Vedere Databricks Runtime 7.4 (EoS) per le modifiche principali all'ambiente Python di Databricks Runtime. Per un elenco completo dei pacchetti Python installati e delle relative versioni, vedere librerie Python.

Pacchetti Python aggiornati

  • cloudpickle 1.3.0 -> 1.4.1
  • databricks-cli 0.11.0 -> 0.13.0
  • horovod 0.19.5 -> 0.20.3
  • petastorm 0.9.5 -> 0.9.6
  • plotly 4.9.0 -> 4.10.0
  • sparkdl 2.1.0-db1 -> 2.1.0-db2
  • tensorflow 2.3.0 -> 2.3.1
  • xgboost 1.1.1 -> 1.2.0

Miglioramenti

Ambiente di sistema

L'ambiente di sistema in Databricks Runtime 7.4 ML differisce da Databricks Runtime 7.4 come indicato di seguito:

Librerie

Le sezioni seguenti elencano le librerie incluse in Databricks Runtime 7.4 ML che differiscono da quelle incluse in Databricks Runtime 7.4.

Contenuto della sezione:

Librerie di livello superiore

Databricks Runtime 7.4 ML include le librerie di livello superiore seguenti:

Librerie Python

Databricks Runtime 7.4 ML usa Conda per la gestione dei pacchetti Python e include molti dei pacchetti ML più diffusi.

Oltre ai pacchetti specificati negli ambienti Conda nelle sezioni seguenti, Databricks Runtime 7.4 ML installa anche i pacchetti seguenti:

  • hyperopt 0.2.4.db2
  • sparkdl 2.1.0-db2

Librerie Python nei cluster CPU

name: databricks-ml
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.9.0=py37_0
  - asn1crypto=1.3.0=py37_1
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.2.0=py37h7b6447c_0
  - blas=1.0=mkl
  - blinker=1.4=py37_0
  - boto3=1.12.0=py_0
  - botocore=1.15.0=py_0
  - c-ares=1.16.1=h7b6447c_0
  - ca-certificates=2020.7.22=0
  - cachetools=4.1.1=py_0
  - certifi=2020.6.20=py37_0
  - cffi=1.14.0=py37h2e261b9_0
  - chardet=3.0.4=py37_1003
  - click=7.0=py37_0
  - cloudpickle=1.4.1=py_0
  - configparser=3.7.4=py37_0
  - cpuonly=1.0=0
  - cryptography=2.8=py37h1ba5d50_0
  - cycler=0.10.0=py37_0
  - cython=0.29.15=py37he6710b0_0
  - decorator=4.4.1=py_0
  - dill=0.3.1.1=py37_1
  - docutils=0.15.2=py37_0
  - entrypoints=0.3=py37_0
  - flask=1.1.1=py_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.18.2=py37_1
  - gast=0.3.3=py_0
  - gitdb=4.0.5=py_0
  - gitpython=3.1.0=py_0
  - google-auth=1.11.2=py_0
  - google-auth-oauthlib=0.4.1=py_2
  - google-pasta=0.2.0=py_0
  - grpcio=1.27.2=py37hf8bcb03_0
  - gunicorn=20.0.4=py37_0
  - h5py=2.10.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.8=py37_0
  - intel-openmp=2020.0=166
  - ipykernel=5.1.4=py37h39e3cac_0
  - ipython=7.12.0=py37h5ca1d4c_0
  - ipython_genutils=0.2.0=py37_0
  - isodate=0.6.0=py_1
  - itsdangerous=1.1.0=py37_0
  - jedi=0.17.2=py37_0
  - jinja2=2.11.1=py_0
  - jmespath=0.10.0=py_0
  - joblib=0.14.1=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=5.3.4=py37_0
  - jupyter_core=4.6.1=py37_0
  - kiwisolver=1.1.0=py37he6710b0_0
  - krb5=1.16.4=h173b8e3_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hf484d3e_1007
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.37=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.11.4=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtiff=4.1.0=h2733197_0
  - lightgbm=2.3.0=py37he6710b0_0
  - lz4-c=1.8.1.2=h14c3975_0
  - mako=1.1.2=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h14c3975_1
  - matplotlib-base=3.1.3=py37hef1b27d_0
  - mkl=2020.0=166
  - mkl-service=2.3.0=py37he904b0f_0
  - mkl_fft=1.0.15=py37ha843d7b_0
  - mkl_random=1.1.0=py37hd6b4f25_0
  - ncurses=6.2=he6710b0_1
  - networkx=2.4=py_1
  - ninja=1.10.1=py37hfd86e86_0
  - nltk=3.4.5=py37_0
  - numpy=1.18.1=py37h4f9e942_0
  - numpy-base=1.18.1=py37hde5b4d6_1
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py37_0
  - openssl=1.1.1h=h7b6447c_0
  - packaging=20.1=py_0
  - pandas=1.0.1=py37h0573a6f_0
  - paramiko=2.7.1=py_0
  - parso=0.7.0=py_0
  - patsy=0.5.1=py37_0
  - pexpect=4.8.0=py37_1
  - pickleshare=0.7.5=py37_1001
  - pillow=7.0.0=py37hb39fc2d_0
  - pip=20.0.2=py37_3
  - plotly=4.10.0=py_0
  - prompt_toolkit=3.0.3=py_0
  - protobuf=3.11.4=py37he6710b0_0
  - psutil=5.6.7=py37h7b6447c_0
  - psycopg2=2.8.4=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.8=py_0
  - pycparser=2.19=py37_0
  - pygments=2.5.2=py_0
  - pyjwt=1.7.1=py37_0
  - pynacl=1.3.0=py37h7b6447c_0
  - pyodbc=4.0.30=py37he6710b0_0
  - pyopenssl=19.1.0=py_1
  - pyparsing=2.4.6=py_0
  - pysocks=1.7.1=py37_1
  - python=3.7.6=h0371630_2
  - python-dateutil=2.8.1=py_0
  - python-editor=1.0.4=py_0
  - pytorch=1.6.0=py3.7_cpu_0
  - pytz=2019.3=py_0
  - pyzmq=18.1.1=py37he6710b0_0
  - readline=7.0=h7b6447c_5
  - requests=2.22.0=py37_1
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py37_2
  - rsa=4.0=py_0
  - s3transfer=0.3.3=py37_1
  - scikit-learn=0.22.1=py37hd81dba3_0
  - scipy=1.4.1=py37h0b6359f_0
  - setuptools=45.2.0=py37_0
  - simplejson=3.17.0=py37h7b6447c_0
  - six=1.14.0=py37_0
  - smmap=3.0.4=py_0
  - sqlite=3.31.1=h62c20be_1
  - sqlparse=0.3.0=py_0
  - statsmodels=0.11.0=py37h7b6447c_0
  - tabulate=0.8.3=py37_0
  - tenacity=6.2.0=py37_0
  - tk=8.6.8=hbc83047_0
  - torchvision=0.7.0=py37_cpu
  - tornado=6.0.3=py37h7b6447c_3
  - tqdm=4.42.1=py_0
  - traitlets=4.3.3=py37_0
  - unixodbc=2.3.7=h14c3975_0
  - urllib3=1.25.8=py37_0
  - wcwidth=0.1.8=py_0
  - websocket-client=0.56.0=py37_0
  - werkzeug=1.0.0=py_0
  - wheel=0.34.2=py37_0
  - wrapt=1.11.2=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - zeromq=4.3.1=he6710b0_3
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - astunparse==1.6.3
    - azure-core==1.8.2
    - azure-storage-blob==12.5.0
    - databricks-cli==0.13.0
    - diskcache==5.0.3
    - docker==4.3.1
    - gorilla==0.3.0
    - horovod==0.20.3
    - joblibspark==0.2.0
    - keras-preprocessing==1.1.2
    - koalas==1.3.0
    - mleap==0.16.1
    - mlflow==1.11.0
    - msrest==0.6.19
    - opt-einsum==3.3.0
    - petastorm==0.9.6
    - pyarrow==1.0.1
    - pyyaml==5.3.1
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - spark-tensorflow-distributor==0.1.0
    - tensorboard==2.3.0
    - tensorboard-plugin-wit==1.7.0
    - tensorflow-cpu==2.3.1
    - tensorflow-estimator==2.3.0
    - termcolor==1.1.0
    - xgboost==1.2.0
prefix: /databricks/conda/envs/databricks-ml

Librerie Python nei cluster GPU

name: databricks-ml-gpu
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.9.0=py37_0
  - asn1crypto=1.3.0=py37_1
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.2.0=py37h7b6447c_0
  - blas=1.0=mkl
  - blinker=1.4=py37_0
  - boto3=1.12.0=py_0
  - botocore=1.15.0=py_0
  - c-ares=1.16.1=h7b6447c_0
  - ca-certificates=2020.7.22=0
  - cachetools=4.1.1=py_0
  - certifi=2020.6.20=py37_0
  - cffi=1.14.0=py37h2e261b9_0
  - chardet=3.0.4=py37_1003
  - click=7.0=py37_0
  - cloudpickle=1.4.1=py_0
  - configparser=3.7.4=py37_0
  - cryptography=2.8=py37h1ba5d50_0
  - cudatoolkit=10.1.243=h6bb024c_0
  - cycler=0.10.0=py37_0
  - cython=0.29.15=py37he6710b0_0
  - decorator=4.4.1=py_0
  - dill=0.3.1.1=py37_1
  - docutils=0.15.2=py37_0
  - entrypoints=0.3=py37_0
  - flask=1.1.1=py_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.18.2=py37_1
  - gast=0.3.3=py_0
  - gitdb=4.0.5=py_0
  - gitpython=3.1.0=py_0
  - google-auth=1.11.2=py_0
  - google-auth-oauthlib=0.4.1=py_2
  - google-pasta=0.2.0=py_0
  - grpcio=1.27.2=py37hf8bcb03_0
  - gunicorn=20.0.4=py37_0
  - h5py=2.10.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.8=py37_0
  - intel-openmp=2020.0=166
  - ipykernel=5.1.4=py37h39e3cac_0
  - ipython=7.12.0=py37h5ca1d4c_0
  - ipython_genutils=0.2.0=py37_0
  - isodate=0.6.0=py_1
  - itsdangerous=1.1.0=py37_0
  - jedi=0.17.2=py37_0
  - jinja2=2.11.1=py_0
  - jmespath=0.10.0=py_0
  - joblib=0.14.1=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=5.3.4=py37_0
  - jupyter_core=4.6.1=py37_0
  - kiwisolver=1.1.0=py37he6710b0_0
  - krb5=1.16.4=h173b8e3_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hf484d3e_1007
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.37=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.11.4=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtiff=4.1.0=h2733197_0
  - lightgbm=2.3.0=py37he6710b0_0
  - lz4-c=1.8.1.2=h14c3975_0
  - mako=1.1.2=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h14c3975_1
  - matplotlib-base=3.1.3=py37hef1b27d_0
  - mkl=2020.0=166
  - mkl-service=2.3.0=py37he904b0f_0
  - mkl_fft=1.0.15=py37ha843d7b_0
  - mkl_random=1.1.0=py37hd6b4f25_0
  - ncurses=6.2=he6710b0_1
  - networkx=2.4=py_1
  - ninja=1.10.1=py37hfd86e86_0
  - nltk=3.4.5=py37_0
  - numpy=1.18.1=py37h4f9e942_0
  - numpy-base=1.18.1=py37hde5b4d6_1
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py37_0
  - openssl=1.1.1h=h7b6447c_0
  - packaging=20.1=py_0
  - pandas=1.0.1=py37h0573a6f_0
  - paramiko=2.7.1=py_0
  - parso=0.7.0=py_0
  - patsy=0.5.1=py37_0
  - pexpect=4.8.0=py37_1
  - pickleshare=0.7.5=py37_1001
  - pillow=7.0.0=py37hb39fc2d_0
  - pip=20.0.2=py37_3
  - plotly=4.10.0=py_0
  - prompt_toolkit=3.0.3=py_0
  - protobuf=3.11.4=py37he6710b0_0
  - psutil=5.6.7=py37h7b6447c_0
  - psycopg2=2.8.4=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.8=py_0
  - pycparser=2.19=py37_0
  - pygments=2.5.2=py_0
  - pyjwt=1.7.1=py37_0
  - pynacl=1.3.0=py37h7b6447c_0
  - pyodbc=4.0.30=py37he6710b0_0
  - pyopenssl=19.1.0=py_1
  - pyparsing=2.4.6=py_0
  - pysocks=1.7.1=py37_1
  - python=3.7.6=h0371630_2
  - python-dateutil=2.8.1=py_0
  - python-editor=1.0.4=py_0
  - pytorch=1.6.0=py3.7_cuda10.1.243_cudnn7.6.3_0
  - pytz=2019.3=py_0
  - pyzmq=18.1.1=py37he6710b0_0
  - readline=7.0=h7b6447c_5
  - requests=2.22.0=py37_1
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py37_2
  - rsa=4.0=py_0
  - s3transfer=0.3.3=py37_1
  - scikit-learn=0.22.1=py37hd81dba3_0
  - scipy=1.4.1=py37h0b6359f_0
  - setuptools=45.2.0=py37_0
  - simplejson=3.17.0=py37h7b6447c_0
  - six=1.14.0=py37_0
  - smmap=3.0.4=py_0
  - sqlite=3.31.1=h62c20be_1
  - sqlparse=0.3.0=py_0
  - statsmodels=0.11.0=py37h7b6447c_0
  - tabulate=0.8.3=py37_0
  - tenacity=6.2.0=py37_0
  - tk=8.6.8=hbc83047_0
  - torchvision=0.7.0=py37_cu101
  - tornado=6.0.3=py37h7b6447c_3
  - tqdm=4.42.1=py_0
  - traitlets=4.3.3=py37_0
  - unixodbc=2.3.7=h14c3975_0
  - urllib3=1.25.8=py37_0
  - wcwidth=0.1.8=py_0
  - websocket-client=0.56.0=py37_0
  - werkzeug=1.0.0=py_0
  - wheel=0.34.2=py37_0
  - wrapt=1.11.2=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - zeromq=4.3.1=he6710b0_3
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - astunparse==1.6.3
    - azure-core==1.8.2
    - azure-storage-blob==12.5.0
    - databricks-cli==0.13.0
    - diskcache==5.0.3
    - docker==4.3.1
    - gorilla==0.3.0
    - horovod==0.20.3
    - joblibspark==0.2.0
    - keras-preprocessing==1.1.2
    - koalas==1.3.0
    - mleap==0.16.1
    - mlflow==1.11.0
    - msrest==0.6.19
    - opt-einsum==3.3.0
    - petastorm==0.9.6
    - pyarrow==1.0.1
    - pyyaml==5.3.1
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - spark-tensorflow-distributor==0.1.0
    - tensorboard==2.3.0
    - tensorboard-plugin-wit==1.7.0
    - tensorflow==2.3.1
    - tensorflow-estimator==2.3.0
    - termcolor==1.1.0
    - xgboost==1.2.0
prefix: /databricks/conda/envs/databricks-ml-gpu

Pacchetti Spark contenenti moduli Python

Pacchetti Spark Modulo Python Versione
GraphFrames GraphFrames 0.8.1-db1-spark3.0

Librerie R

Le librerie R sono identiche alle librerie R in Databricks Runtime 7.4.

Librerie Java e Scala (cluster Scala 2.12)

Oltre alle librerie Java e Scala in Databricks Runtime 7.4, Databricks Runtime 7.4 ML contiene i file JAR seguenti:

Cluster CPU

ID gruppo ID artefatto Versione
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.17.3-4882dc3
ml.dmlc xgboost4j-spark_2.12 1.2.0
ml.dmlc xgboost4j_2.12 1.2.0
org.mlflow mlflow-client 1.11.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0

Cluster GPU

ID gruppo ID artefatto Versione
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.17.3-4882dc3
ml.dmlc xgboost4j-spark-gpu_2.12 1.2.0
ml.dmlc xgboost4j-gpu_2.12 1.2.0
org.mlflow mlflow-client 1.11.0
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0