Databricks Runtime 7.4 per ML (EoS)
Nota
Il supporto per questa versione di Databricks Runtime è terminato. Per la data di fine del supporto, vedere Cronologia di fine del supporto. Per tutte le versioni supportate di Databricks Runtime, vedere Versioni e compatibilità delle note sulla versione di Databricks Runtime.
Databricks ha rilasciato questa versione a novembre 2020.
Databricks Runtime 7.4 per Machine Learning è un ambiente pronto all’uso ottimizzato per l'esecuzione di processi di apprendimento automatico e data science basato su Databricks Runtime 7.4 (EoS). Databricks Runtime ML contiene molte di queste popolari librerie per l’apprendimento automatico, tra cui TensorFlow, PyTorch e XGBoost. È inoltre supportato il training distribuito con Horovod.
Per altre informazioni, incluse le istruzioni per la creazione di un cluster di Databricks Runtime ML, vedere IA e Machine Learning in Databricks.
Nuove caratteristiche e modifiche importanti
Databricks Runtime 7.4 ML è basato su Databricks Runtime 7.4. Per informazioni sulle novità di Databricks Runtime 7.4, tra cui Apache Spark MLlib e SparkR, vedere le note sulla versione di Databricks Runtime 7.4 (EoS).
Modifiche principali all'ambiente Scala di Databricks Runtime ML
XGBoost viene aggiornato alla versione 1.2.0. Questa versione consente a XGBoost di usare GPU nei cluster Spark per migliorare la velocità di training. Esistono diverse altre modifiche, tra cui alcune modifiche che causano un'interruzione. Per altre informazioni, vedere le note sulla versione di XGBoost 1.2.0.
In particolare, nei cluster CPU, xgboost4j_2.12
e xgboost4j-spark_2.12
vengono aggiornati da 1.0.0 a 1.2.0. Nei cluster GPU questi pacchetti vengono rimossi e vengono installati la versione 1.2.0 di xgboost4j-gpu_2.12
e xgboost4j-spark-gpu_2.12
.
GraphFrames viene aggiornato da 0.8.0-db2-spark3.0 a 0.8.1-db1-spark3.0.
Modifiche principali all'ambiente Python di Databricks Runtime ML
Vedere Databricks Runtime 7.4 (EoS) per le modifiche principali all'ambiente Python di Databricks Runtime. Per un elenco completo dei pacchetti Python installati e delle relative versioni, vedere librerie Python.
Pacchetti Python aggiornati
- cloudpickle 1.3.0 -> 1.4.1
- databricks-cli 0.11.0 -> 0.13.0
- horovod 0.19.5 -> 0.20.3
- petastorm 0.9.5 -> 0.9.6
- plotly 4.9.0 -> 4.10.0
- sparkdl 2.1.0-db1 -> 2.1.0-db2
- tensorflow 2.3.0 -> 2.3.1
- xgboost 1.1.1 -> 1.2.0
Miglioramenti
- Alcuni problemi di selezione che causavano errori PyTorch sono stati risolti in Databricks Runtime 7.4. Per informazioni dettagliate, vedere le note sulla versione di Databricks Runtime 7.4.
- Horovod 0.20.3 supporta l'uso del pacchetto
horovod.spark
in Azure Databricks. Vedere horovod.spark: Deep Learning implementato con Horovod.
Ambiente di sistema
L'ambiente di sistema in Databricks Runtime 7.4 ML differisce da Databricks Runtime 7.4 come indicato di seguito:
- Open MPI viene aggiornato dalla versione 4.0.4 alla versione 4.0.5
-
DBUtils: Databricks Runtime ML non contiene l'utilità libreria (dbutils.library) (legacy).
È possibile usare i comandi
%pip
e%conda
. Vedere Librerie Python con ambito notebook. - Per i cluster GPU, Databricks Runtime ML include le librerie GPU NVIDIA seguenti:
- CUDA 10.1 Update 2
- cuDNN 7.6.5
- NCCL 2.7.3
- TensorRT 6.0.1
Librerie
Le sezioni seguenti elencano le librerie incluse in Databricks Runtime 7.4 ML che differiscono da quelle incluse in Databricks Runtime 7.4.
Contenuto della sezione:
Librerie di livello superiore
Databricks Runtime 7.4 ML include le librerie di livello superiore seguenti:
- GraphFrames
- Horovod e HorovodRunner
- MLflow
- PyTorch
- spark-tensorflow-connector
- TensorFlow
- TensorBoard
Librerie Python
Databricks Runtime 7.4 ML usa Conda per la gestione dei pacchetti Python e include molti dei pacchetti ML più diffusi.
Oltre ai pacchetti specificati negli ambienti Conda nelle sezioni seguenti, Databricks Runtime 7.4 ML installa anche i pacchetti seguenti:
- hyperopt 0.2.4.db2
- sparkdl 2.1.0-db2
Librerie Python nei cluster CPU
name: databricks-ml
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.9.0=py37_0
- asn1crypto=1.3.0=py37_1
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.2.0=py37h7b6447c_0
- blas=1.0=mkl
- blinker=1.4=py37_0
- boto3=1.12.0=py_0
- botocore=1.15.0=py_0
- c-ares=1.16.1=h7b6447c_0
- ca-certificates=2020.7.22=0
- cachetools=4.1.1=py_0
- certifi=2020.6.20=py37_0
- cffi=1.14.0=py37h2e261b9_0
- chardet=3.0.4=py37_1003
- click=7.0=py37_0
- cloudpickle=1.4.1=py_0
- configparser=3.7.4=py37_0
- cpuonly=1.0=0
- cryptography=2.8=py37h1ba5d50_0
- cycler=0.10.0=py37_0
- cython=0.29.15=py37he6710b0_0
- decorator=4.4.1=py_0
- dill=0.3.1.1=py37_1
- docutils=0.15.2=py37_0
- entrypoints=0.3=py37_0
- flask=1.1.1=py_1
- freetype=2.9.1=h8a8886c_1
- future=0.18.2=py37_1
- gast=0.3.3=py_0
- gitdb=4.0.5=py_0
- gitpython=3.1.0=py_0
- google-auth=1.11.2=py_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=py_0
- grpcio=1.27.2=py37hf8bcb03_0
- gunicorn=20.0.4=py37_0
- h5py=2.10.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2020.0=166
- ipykernel=5.1.4=py37h39e3cac_0
- ipython=7.12.0=py37h5ca1d4c_0
- ipython_genutils=0.2.0=py37_0
- isodate=0.6.0=py_1
- itsdangerous=1.1.0=py37_0
- jedi=0.17.2=py37_0
- jinja2=2.11.1=py_0
- jmespath=0.10.0=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- kiwisolver=1.1.0=py37he6710b0_0
- krb5=1.16.4=h173b8e3_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hf484d3e_1007
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- lightgbm=2.3.0=py37he6710b0_0
- lz4-c=1.8.1.2=h14c3975_0
- mako=1.1.2=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h14c3975_1
- matplotlib-base=3.1.3=py37hef1b27d_0
- mkl=2020.0=166
- mkl-service=2.3.0=py37he904b0f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- ncurses=6.2=he6710b0_1
- networkx=2.4=py_1
- ninja=1.10.1=py37hfd86e86_0
- nltk=3.4.5=py37_0
- numpy=1.18.1=py37h4f9e942_0
- numpy-base=1.18.1=py37hde5b4d6_1
- oauthlib=3.1.0=py_0
- olefile=0.46=py37_0
- openssl=1.1.1h=h7b6447c_0
- packaging=20.1=py_0
- pandas=1.0.1=py37h0573a6f_0
- paramiko=2.7.1=py_0
- parso=0.7.0=py_0
- patsy=0.5.1=py37_0
- pexpect=4.8.0=py37_1
- pickleshare=0.7.5=py37_1001
- pillow=7.0.0=py37hb39fc2d_0
- pip=20.0.2=py37_3
- plotly=4.10.0=py_0
- prompt_toolkit=3.0.3=py_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.7=py37h7b6447c_0
- psycopg2=2.8.4=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.19=py37_0
- pygments=2.5.2=py_0
- pyjwt=1.7.1=py37_0
- pynacl=1.3.0=py37h7b6447c_0
- pyodbc=4.0.30=py37he6710b0_0
- pyopenssl=19.1.0=py_1
- pyparsing=2.4.6=py_0
- pysocks=1.7.1=py37_1
- python=3.7.6=h0371630_2
- python-dateutil=2.8.1=py_0
- python-editor=1.0.4=py_0
- pytorch=1.6.0=py3.7_cpu_0
- pytz=2019.3=py_0
- pyzmq=18.1.1=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.22.0=py37_1
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py37_2
- rsa=4.0=py_0
- s3transfer=0.3.3=py37_1
- scikit-learn=0.22.1=py37hd81dba3_0
- scipy=1.4.1=py37h0b6359f_0
- setuptools=45.2.0=py37_0
- simplejson=3.17.0=py37h7b6447c_0
- six=1.14.0=py37_0
- smmap=3.0.4=py_0
- sqlite=3.31.1=h62c20be_1
- sqlparse=0.3.0=py_0
- statsmodels=0.11.0=py37h7b6447c_0
- tabulate=0.8.3=py37_0
- tenacity=6.2.0=py37_0
- tk=8.6.8=hbc83047_0
- torchvision=0.7.0=py37_cpu
- tornado=6.0.3=py37h7b6447c_3
- tqdm=4.42.1=py_0
- traitlets=4.3.3=py37_0
- unixodbc=2.3.7=h14c3975_0
- urllib3=1.25.8=py37_0
- wcwidth=0.1.8=py_0
- websocket-client=0.56.0=py37_0
- werkzeug=1.0.0=py_0
- wheel=0.34.2=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- astunparse==1.6.3
- azure-core==1.8.2
- azure-storage-blob==12.5.0
- databricks-cli==0.13.0
- diskcache==5.0.3
- docker==4.3.1
- gorilla==0.3.0
- horovod==0.20.3
- joblibspark==0.2.0
- keras-preprocessing==1.1.2
- koalas==1.3.0
- mleap==0.16.1
- mlflow==1.11.0
- msrest==0.6.19
- opt-einsum==3.3.0
- petastorm==0.9.6
- pyarrow==1.0.1
- pyyaml==5.3.1
- querystring-parser==1.2.4
- seaborn==0.10.0
- spark-tensorflow-distributor==0.1.0
- tensorboard==2.3.0
- tensorboard-plugin-wit==1.7.0
- tensorflow-cpu==2.3.1
- tensorflow-estimator==2.3.0
- termcolor==1.1.0
- xgboost==1.2.0
prefix: /databricks/conda/envs/databricks-ml
Librerie Python nei cluster GPU
name: databricks-ml-gpu
channels:
- pytorch
- defaults
dependencies:
- _libgcc_mutex=0.1=main
- absl-py=0.9.0=py37_0
- asn1crypto=1.3.0=py37_1
- astor=0.8.0=py37_0
- backcall=0.1.0=py37_0
- backports=1.0=py_2
- bcrypt=3.2.0=py37h7b6447c_0
- blas=1.0=mkl
- blinker=1.4=py37_0
- boto3=1.12.0=py_0
- botocore=1.15.0=py_0
- c-ares=1.16.1=h7b6447c_0
- ca-certificates=2020.7.22=0
- cachetools=4.1.1=py_0
- certifi=2020.6.20=py37_0
- cffi=1.14.0=py37h2e261b9_0
- chardet=3.0.4=py37_1003
- click=7.0=py37_0
- cloudpickle=1.4.1=py_0
- configparser=3.7.4=py37_0
- cryptography=2.8=py37h1ba5d50_0
- cudatoolkit=10.1.243=h6bb024c_0
- cycler=0.10.0=py37_0
- cython=0.29.15=py37he6710b0_0
- decorator=4.4.1=py_0
- dill=0.3.1.1=py37_1
- docutils=0.15.2=py37_0
- entrypoints=0.3=py37_0
- flask=1.1.1=py_1
- freetype=2.9.1=h8a8886c_1
- future=0.18.2=py37_1
- gast=0.3.3=py_0
- gitdb=4.0.5=py_0
- gitpython=3.1.0=py_0
- google-auth=1.11.2=py_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=py_0
- grpcio=1.27.2=py37hf8bcb03_0
- gunicorn=20.0.4=py37_0
- h5py=2.10.0=py37h7918eee_0
- hdf5=1.10.4=hb1b8bf9_0
- icu=58.2=he6710b0_3
- idna=2.8=py37_0
- intel-openmp=2020.0=166
- ipykernel=5.1.4=py37h39e3cac_0
- ipython=7.12.0=py37h5ca1d4c_0
- ipython_genutils=0.2.0=py37_0
- isodate=0.6.0=py_1
- itsdangerous=1.1.0=py37_0
- jedi=0.17.2=py37_0
- jinja2=2.11.1=py_0
- jmespath=0.10.0=py_0
- joblib=0.14.1=py_0
- jpeg=9b=h024ee3a_2
- jupyter_client=5.3.4=py37_0
- jupyter_core=4.6.1=py37_0
- kiwisolver=1.1.0=py37he6710b0_0
- krb5=1.16.4=h173b8e3_0
- ld_impl_linux-64=2.33.1=h53a641e_7
- libedit=3.1.20181209=hc058e9b_0
- libffi=3.2.1=hf484d3e_1007
- libgcc-ng=9.1.0=hdf63c60_0
- libgfortran-ng=7.3.0=hdf63c60_0
- libpng=1.6.37=hbc83047_0
- libpq=11.2=h20c2e04_0
- libprotobuf=3.11.4=hd408876_0
- libsodium=1.0.16=h1bed415_0
- libstdcxx-ng=9.1.0=hdf63c60_0
- libtiff=4.1.0=h2733197_0
- lightgbm=2.3.0=py37he6710b0_0
- lz4-c=1.8.1.2=h14c3975_0
- mako=1.1.2=py_0
- markdown=3.1.1=py37_0
- markupsafe=1.1.1=py37h14c3975_1
- matplotlib-base=3.1.3=py37hef1b27d_0
- mkl=2020.0=166
- mkl-service=2.3.0=py37he904b0f_0
- mkl_fft=1.0.15=py37ha843d7b_0
- mkl_random=1.1.0=py37hd6b4f25_0
- ncurses=6.2=he6710b0_1
- networkx=2.4=py_1
- ninja=1.10.1=py37hfd86e86_0
- nltk=3.4.5=py37_0
- numpy=1.18.1=py37h4f9e942_0
- numpy-base=1.18.1=py37hde5b4d6_1
- oauthlib=3.1.0=py_0
- olefile=0.46=py37_0
- openssl=1.1.1h=h7b6447c_0
- packaging=20.1=py_0
- pandas=1.0.1=py37h0573a6f_0
- paramiko=2.7.1=py_0
- parso=0.7.0=py_0
- patsy=0.5.1=py37_0
- pexpect=4.8.0=py37_1
- pickleshare=0.7.5=py37_1001
- pillow=7.0.0=py37hb39fc2d_0
- pip=20.0.2=py37_3
- plotly=4.10.0=py_0
- prompt_toolkit=3.0.3=py_0
- protobuf=3.11.4=py37he6710b0_0
- psutil=5.6.7=py37h7b6447c_0
- psycopg2=2.8.4=py37h1ba5d50_0
- ptyprocess=0.6.0=py37_0
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.19=py37_0
- pygments=2.5.2=py_0
- pyjwt=1.7.1=py37_0
- pynacl=1.3.0=py37h7b6447c_0
- pyodbc=4.0.30=py37he6710b0_0
- pyopenssl=19.1.0=py_1
- pyparsing=2.4.6=py_0
- pysocks=1.7.1=py37_1
- python=3.7.6=h0371630_2
- python-dateutil=2.8.1=py_0
- python-editor=1.0.4=py_0
- pytorch=1.6.0=py3.7_cuda10.1.243_cudnn7.6.3_0
- pytz=2019.3=py_0
- pyzmq=18.1.1=py37he6710b0_0
- readline=7.0=h7b6447c_5
- requests=2.22.0=py37_1
- requests-oauthlib=1.3.0=py_0
- retrying=1.3.3=py37_2
- rsa=4.0=py_0
- s3transfer=0.3.3=py37_1
- scikit-learn=0.22.1=py37hd81dba3_0
- scipy=1.4.1=py37h0b6359f_0
- setuptools=45.2.0=py37_0
- simplejson=3.17.0=py37h7b6447c_0
- six=1.14.0=py37_0
- smmap=3.0.4=py_0
- sqlite=3.31.1=h62c20be_1
- sqlparse=0.3.0=py_0
- statsmodels=0.11.0=py37h7b6447c_0
- tabulate=0.8.3=py37_0
- tenacity=6.2.0=py37_0
- tk=8.6.8=hbc83047_0
- torchvision=0.7.0=py37_cu101
- tornado=6.0.3=py37h7b6447c_3
- tqdm=4.42.1=py_0
- traitlets=4.3.3=py37_0
- unixodbc=2.3.7=h14c3975_0
- urllib3=1.25.8=py37_0
- wcwidth=0.1.8=py_0
- websocket-client=0.56.0=py37_0
- werkzeug=1.0.0=py_0
- wheel=0.34.2=py37_0
- wrapt=1.11.2=py37h7b6447c_0
- xz=5.2.4=h14c3975_4
- zeromq=4.3.1=he6710b0_3
- zlib=1.2.11=h7b6447c_3
- zstd=1.3.7=h0b5b093_0
- pip:
- astunparse==1.6.3
- azure-core==1.8.2
- azure-storage-blob==12.5.0
- databricks-cli==0.13.0
- diskcache==5.0.3
- docker==4.3.1
- gorilla==0.3.0
- horovod==0.20.3
- joblibspark==0.2.0
- keras-preprocessing==1.1.2
- koalas==1.3.0
- mleap==0.16.1
- mlflow==1.11.0
- msrest==0.6.19
- opt-einsum==3.3.0
- petastorm==0.9.6
- pyarrow==1.0.1
- pyyaml==5.3.1
- querystring-parser==1.2.4
- seaborn==0.10.0
- spark-tensorflow-distributor==0.1.0
- tensorboard==2.3.0
- tensorboard-plugin-wit==1.7.0
- tensorflow==2.3.1
- tensorflow-estimator==2.3.0
- termcolor==1.1.0
- xgboost==1.2.0
prefix: /databricks/conda/envs/databricks-ml-gpu
Pacchetti Spark contenenti moduli Python
Pacchetti Spark | Modulo Python | Versione |
---|---|---|
GraphFrames | GraphFrames | 0.8.1-db1-spark3.0 |
Librerie R
Le librerie R sono identiche alle librerie R in Databricks Runtime 7.4.
Librerie Java e Scala (cluster Scala 2.12)
Oltre alle librerie Java e Scala in Databricks Runtime 7.4, Databricks Runtime 7.4 ML contiene i file JAR seguenti:
Cluster CPU
ID gruppo | ID artefatto | Versione |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.3-4882dc3 |
ml.dmlc | xgboost4j-spark_2.12 | 1.2.0 |
ml.dmlc | xgboost4j_2.12 | 1.2.0 |
org.mlflow | mlflow-client | 1.11.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |
Cluster GPU
ID gruppo | ID artefatto | Versione |
---|---|---|
com.typesafe.akka | akka-actor_2.12 | 2.5.23 |
ml.combust.mleap | mleap-databricks-runtime_2.12 | 0.17.3-4882dc3 |
ml.dmlc | xgboost4j-spark-gpu_2.12 | 1.2.0 |
ml.dmlc | xgboost4j-gpu_2.12 | 1.2.0 |
org.mlflow | mlflow-client | 1.11.0 |
org.scala-lang.modules | scala-java8-compat_2.12 | 0.8.0 |
org.tensorflow | spark-tensorflow-connector_2.12 | 1.15.0 |