Condividi tramite


Aggiornare la gestione dell'archivio dati all'SDK v2

Gli archivi dati di Azure Machine Learning mantengono in modo sicuro le informazioni di connessione all'archiviazione dei dati in Azure, quindi non è necessario codificarli negli script. Il concetto di archivio dati V2 rimane sostanzialmente invariato rispetto alla versione 1. La differenza consiste nel non supportare origini dati simili a SQL tramite gli archivi dati di Azure Machine Learning. Le origini dati simili a SQL verranno supportate tramite le funzionalità di importazione e esportazione dei dati di Azure Machine Learning.

Questo articolo offre un confronto tra scenari in SDK v1 e SDK v2.

Creare un archivio dati da un contenitore BLOB di Azure tramite account_key

  • SDK v1

    blob_datastore_name='azblobsdk' # Name of the datastore to workspace
    container_name=os.getenv("BLOB_CONTAINER", "<my-container-name>") # Name of Azure blob container
    account_name=os.getenv("BLOB_ACCOUNTNAME", "<my-account-name>") # Storage account name
    account_key=os.getenv("BLOB_ACCOUNT_KEY", "<my-account-key>") # Storage account access key
    
    blob_datastore = Datastore.register_azure_blob_container(workspace=ws, 
                                                             datastore_name=blob_datastore_name, 
                                                             container_name=container_name, 
                                                             account_name=account_name,
                                                             account_key=account_key)
    
  • SDK v2

    from azure.ai.ml.entities import AzureBlobDatastore
    from azure.ai.ml import MLClient
    
    ml_client = MLClient.from_config()
    
    store = AzureBlobDatastore(
        name="blob-protocol-example",
        description="Datastore pointing to a blob container using wasbs protocol.",
        account_name="mytestblobstore",
        container_name="data-container",
        protocol="wasbs",
        credentials={
            "account_key": "XXXxxxXXXxXXXXxxXXXXXxXXXXXxXxxXxXXXxXXXxXXxxxXXxxXXXxXxXXXxxXxxXXXXxxxxxXXxxxxxxXXXxXXX"
        },
    )
    
    ml_client.create_or_update(store)
    

Creare un archivio dati da un contenitore BLOB di Azure tramite sas_token

  • SDK v1

    blob_datastore_name='azblobsdk' # Name of the datastore to workspace
    container_name=os.getenv("BLOB_CONTAINER", "<my-container-name>") # Name of Azure blob container
    sas_token=os.getenv("BLOB_SAS_TOKEN", "<my-sas-token>") # Sas token
    
    blob_datastore = Datastore.register_azure_blob_container(workspace=ws, 
                                                             datastore_name=blob_datastore_name, 
                                                             container_name=container_name, 
                                                             sas_token=sas_token)
    
  • SDK v2

    from azure.ai.ml.entities import AzureBlobDatastore
    from azure.ai.ml import MLClient
    
    ml_client = MLClient.from_config()
    
    store = AzureBlobDatastore(
        name="blob-sas-example",
        description="Datastore pointing to a blob container using SAS token.",
        account_name="mytestblobstore",
        container_name="data-container",
        credentials=SasTokenCredentials(
            sas_token= "?xx=XXXX-XX-XX&xx=xxxx&xxx=xxx&xx=xxxxxxxxxxx&xx=XXXX-XX-XXXXX:XX:XXX&xx=XXXX-XX-XXXXX:XX:XXX&xxx=xxxxx&xxx=XXxXXXxxxxxXXXXXXXxXxxxXXXXXxxXXXXXxXXXXxXXXxXXxXX"
        ),
    )
    
    ml_client.create_or_update(store)
    

Creare un archivio dati da un contenitore BLOB di Azure tramite l'autenticazione basata su identità

  • SDK v1
blob_datastore = Datastore.register_azure_blob_container(workspace=ws,
                                                      datastore_name='credentialless_blob',
                                                      container_name='my_container_name',
                                                      account_name='my_account_name')

  • SDK v2

    from azure.ai.ml.entities import AzureBlobDatastore
    from azure.ai.ml import MLClient
    
    ml_client = MLClient.from_config()
    
    store = AzureBlobDatastore(
        name="",
        description="",
        account_name="",
        container_name=""
    )
    
    ml_client.create_or_update(store)
    

Ottenere gli archivi dati dall'area di lavoro

  • SDK v1

    # Get a named datastore from the current workspace
    datastore = Datastore.get(ws, datastore_name='your datastore name')
    
    # List all datastores registered in the current workspace
    datastores = ws.datastores
    for name, datastore in datastores.items():
        print(name, datastore.datastore_type)
    
  • SDK v2

    from azure.ai.ml import MLClient
    from azure.identity import DefaultAzureCredential
    
    #Enter details of your Azure Machine Learning workspace
    subscription_id = '<SUBSCRIPTION_ID>'
    resource_group = '<RESOURCE_GROUP>'
    workspace_name = '<AZUREML_WORKSPACE_NAME>'
    
    ml_client = MLClient(credential=DefaultAzureCredential(),
                         subscription_id=subscription_id, 
                         resource_group_name=resource_group)
    
    datastore = ml_client.datastores.get(name='your datastore name')
    

Mapping delle funzionalità chiave in SDK v1 e SDK v2

Tipi di archiviazione in SDK v1 Tipi di archiviazione in SDK v2
azureml_blob_datastore azureml_blob_datastore
azureml_data_lake_gen1_datastore azureml_data_lake_gen1_datastore
azureml_data_lake_gen2_datastore azureml_data_lake_gen2_datastore
azuremlml_sql_database_datastore Sarà supportato tramite le funzionalità di importazione ed esportazione
azuremlml_my_sql_datastore Sarà supportato tramite le funzionalità di importazione ed esportazione
azuremlml_postgre_sql_datastore Sarà supportato tramite le funzionalità di importazione ed esportazione

Passaggi successivi

Per altre informazioni, vedi: