Personalizzare l'immagine di base per la sessione di calcolo
Questa sezione presuppone la conoscenza di Docker e degli ambienti di Azure Machine Learning.
Passaggio 1: Preparare il contesto Docker
Creare la cartella image_build
Nell'ambiente locale creare una cartella contenente i file seguenti. La struttura della cartella dovrebbe essere simile alla seguente:
|--image_build
| |--requirements.txt
| |--Dockerfile
| |--environment.yaml
Definire i pacchetti necessari in requirements.txt
Facoltativo: aggiungere pacchetti nel repository pypi privato.
Usare il comando seguente per scaricare i pacchetti nell'ambiente locale: pip wheel <package_name> --index-url=<private pypi> --wheel-dir <local path to save packages>
Aprire il file requirements.txt
e aggiungervi i pacchetti aggiuntivi e la versione specifica. Ad esempio:
###### Requirements with Version Specifiers ######
langchain == 0.0.149 # Version Matching. Must be version 0.0.149
keyring >= 4.1.1 # Minimum version 4.1.1
coverage != 3.5 # Version Exclusion. Anything except version 3.5
Mopidy-Dirble ~= 1.1 # Compatible release. Same as >= 1.1, == 1.*
<path_to_local_package> # reference to local pip wheel package
Per altre informazioni sulla strutturazione del file requirements.txt
, vedere Formato di file dei requisiti nella documentazione di pip.
Definire il Dockerfile
Creare un Dockerfile
e aggiungere il contenuto seguente, quindi salvare il file:
FROM <Base_image>
COPY ./* ./
RUN pip install -r requirements.txt
Nota
Questa immagine Docker deve essere creata dall'immagine di base del prompt flow, ovvero mcr.microsoft.com/azureml/promptflow/promptflow-runtime:<newest_version>
. Se possibile, usare la versione più recente dell'immagine di base.
Passaggio 2: Creare un ambiente di Azure Machine Learning personalizzato
Definire l'ambiente in environment.yaml
Nell'ambiente di calcolo locale è possibile usare l'interfaccia della riga di comando (v2) per creare un ambiente personalizzato basato sull'immagine Docker.
Nota
- Assicurarsi di soddisfare i prerequisiti per la creazione dell'ambiente.
- Verificare di essere connessi all'area di lavoro.
az login # if not already authenticated
az account set --subscription <subscription ID>
az configure --defaults workspace=<Azure Machine Learning workspace name> group=<resource group>
Aprire il file environment.yaml
e aggiungere il contenuto seguente. Sostituire il segnaposto <environment_name> con il nome dell'ambiente desiderato.
$schema: https://azuremlschemas.azureedge.net/latest/environment.schema.json
name: <environment_name>
build:
path: .
Crea un ambiente
cd image_build
az ml environment create -f environment.yaml --subscription <sub-id> -g <resource-group> -w <workspace>
Nota
La creazione dell'immagine dell'ambiente può richiedere alcuni minuti.
Passare alla pagina dell'interfaccia utente dell'area di lavoro, quindi alla pagina Ambienti e individuare l'ambiente personalizzato creato.
È anche possibile trovare l'immagine nella pagina dei dettagli dell'ambiente e usarla come immagine di base per la sessione di calcolo di prompt flow. Questa immagine verrà usata anche per creare l'ambiente per la distribuzione del flusso dall'interfaccia utente. Altre informazioni su come specificare l'immagine di base nella sessione di calcolo.
Per altre informazioni sull'interfaccia della riga di comando dell'ambiente, vedere Gestire gli ambienti.