Condividi tramite


Guida introduttiva: Creare un cluster di macchine virtuali Linux in Azure con Terraform

Si applica a: ✔️ macchine virtuali Linux

Questo articolo illustra come creare un cluster di macchine virtuali Linux (contenente due istanze di macchine virtuali Linux) in Azure usando Terraform.

In questo articolo vengono illustrate le operazioni seguenti:

Prerequisiti

Implementare il codice Terraform

  1. Creare una directory in cui testare il codice Terraform di esempio e impostarla come directory corrente.

  2. Creare un file denominato providers.tf e inserire il codice seguente:

    terraform {
      required_version = ">=1.0"
      required_providers {
        azapi = {
          source  = "azure/azapi"
          version = "~>1.5"
        }
        azurerm = {
          source  = "hashicorp/azurerm"
          version = "~>3.0"
        }
        random = {
          source  = "hashicorp/random"
          version = "~>3.0"
        }
      }
    }
    provider "azurerm" {
      features {}
    }
    
  3. Creare un file denominato ssh.tf e inserire il codice seguente:

    resource "random_pet" "ssh_key_name" {
      prefix    = "ssh"
      separator = ""
    }
    
    resource "azapi_resource_action" "ssh_public_key_gen" {
      type        = "Microsoft.Compute/sshPublicKeys@2022-11-01"
      resource_id = azapi_resource.ssh_public_key.id
      action      = "generateKeyPair"
      method      = "POST"
    
      response_export_values = ["publicKey", "privateKey"]
    }
    
    resource "azapi_resource" "ssh_public_key" {
      type      = "Microsoft.Compute/sshPublicKeys@2022-11-01"
      name      = random_pet.ssh_key_name.id
      location  = azurerm_resource_group.rg.location
      parent_id = azurerm_resource_group.rg.id
    }
    
    output "key_data" {
      value = azapi_resource_action.ssh_public_key_gen.output.publicKey
    }
    
  4. Creare un file denominato main.tf e inserire il codice seguente:

    resource "random_pet" "rg_name" {
      prefix = var.resource_group_name_prefix
    }
    
    resource "azurerm_resource_group" "rg" {
      name     = random_pet.rg_name.id
      location = var.resource_group_location
    }
    
    resource "random_pet" "azurerm_virtual_network_name" {
      prefix = "vnet"
    }
    
    resource "azurerm_virtual_network" "test" {
      name                = random_pet.azurerm_virtual_network_name.id
      address_space       = ["10.0.0.0/16"]
      location            = azurerm_resource_group.rg.location
      resource_group_name = azurerm_resource_group.rg.name
    }
    
    resource "random_pet" "azurerm_subnet_name" {
      prefix = "sub"
    }
    
    resource "azurerm_subnet" "test" {
      name                 = random_pet.azurerm_subnet_name.id
      resource_group_name  = azurerm_resource_group.rg.name
      virtual_network_name = azurerm_virtual_network.test.name
      address_prefixes     = ["10.0.2.0/24"]
    }
    
    resource "azurerm_public_ip" "test" {
      name                = "publicIPForLB"
      location            = azurerm_resource_group.rg.location
      resource_group_name = azurerm_resource_group.rg.name
      allocation_method   = "Static"
    }
    
    resource "azurerm_lb" "test" {
      name                = "loadBalancer"
      location            = azurerm_resource_group.rg.location
      resource_group_name = azurerm_resource_group.rg.name
    
      frontend_ip_configuration {
        name                 = "publicIPAddress"
        public_ip_address_id = azurerm_public_ip.test.id
      }
    }
    
    resource "azurerm_lb_backend_address_pool" "test" {
      loadbalancer_id = azurerm_lb.test.id
      name            = "BackEndAddressPool"
    }
    
    resource "azurerm_network_interface" "test" {
      count               = 2
      name                = "acctni${count.index}"
      location            = azurerm_resource_group.rg.location
      resource_group_name = azurerm_resource_group.rg.name
    
      ip_configuration {
        name                          = "testConfiguration"
        subnet_id                     = azurerm_subnet.test.id
        private_ip_address_allocation = "Dynamic"
      }
    }
    
    resource "azurerm_availability_set" "avset" {
      name                         = "avset"
      location                     = azurerm_resource_group.rg.location
      resource_group_name          = azurerm_resource_group.rg.name
      platform_fault_domain_count  = 2
      platform_update_domain_count = 2
      managed                      = true
    }
    
    resource "random_pet" "azurerm_linux_virtual_machine_name" {
      prefix = "vm"
    }
    
    resource "azurerm_linux_virtual_machine" "test" {
      count                 = 2
      name                  = "${random_pet.azurerm_linux_virtual_machine_name.id}${count.index}"
      location              = azurerm_resource_group.rg.location
      availability_set_id   = azurerm_availability_set.avset.id
      resource_group_name   = azurerm_resource_group.rg.name
      network_interface_ids = [azurerm_network_interface.test[count.index].id]
      size                  = "Standard_DS1_v2"
    
      # Uncomment this line to delete the OS disk automatically when deleting the VM
      # delete_os_disk_on_termination = true
    
      # Uncomment this line to delete the data disks automatically when deleting the VM
      # delete_data_disks_on_termination = true
    
      source_image_reference {
        publisher = "Canonical"
        offer     = "UbuntuServer"
        sku       = "16.04-LTS"
        version   = "latest"
      }
    
      admin_ssh_key {
        username   = var.username
        public_key = azapi_resource_action.ssh_public_key_gen.output.publicKey
      }
    
      os_disk {
        caching              = "ReadWrite"
        storage_account_type = "Standard_LRS"
        name                 = "myosdisk${count.index}"
      }
    
      computer_name  = "hostname"
      admin_username = var.username
    }
    
    resource "azurerm_managed_disk" "test" {
      count                = 2
      name                 = "datadisk_existing_${count.index}"
      location             = azurerm_resource_group.rg.location
      resource_group_name  = azurerm_resource_group.rg.name
      storage_account_type = "Standard_LRS"
      create_option        = "Empty"
      disk_size_gb         = "1024"
    }
    
    resource "azurerm_virtual_machine_data_disk_attachment" "test" {
      count              = 2
      managed_disk_id    = azurerm_managed_disk.test[count.index].id
      virtual_machine_id = azurerm_linux_virtual_machine.test[count.index].id
      lun                = "10"
      caching            = "ReadWrite"
    }
    
  5. Creare un file denominato variables.tf e inserire il codice seguente:

    variable "resource_group_location" {
      type        = string
      description = "Location for all resources."
      default     = "eastus"
    }
    
    variable "resource_group_name_prefix" {
      type        = string
      description = "Prefix of the resource group name that's combined with a random ID so name is unique in your Azure subscription."
      default     = "rg"
    }
    
    variable "username" {
      type        = string
      description = "The username for the local account that will be created on the new VM."
      default     = "azureadmin"
    }
    
  6. Creare un file denominato outputs.tf e inserire il codice seguente:

    output "resource_group_name" {
      value = azurerm_resource_group.rg.name
    }
    
    output "virtual_network_name" {
      value = azurerm_virtual_network.test.name
    }
    
    output "subnet_name" {
      value = azurerm_subnet.test.name
    }
    
    output "linux_virtual_machine_names" {
      value = [for s in azurerm_linux_virtual_machine.test : s.name[*]]
    }
    

Inizializzare Terraform

Per inizializzare la distribuzione di Terraform, eseguire terraform init. Questo comando scarica il provider di Azure necessario per gestire le risorse di Azure.

terraform init -upgrade

Punti principali:

  • Il parametro -upgrade aggiorna i plug-in del provider necessari alla versione più recente conforme ai vincoli di versione della configurazione.

Creare un piano di esecuzione Terraform

Eseguire terraform plan per creare un piano di esecuzione.

terraform plan -out main.tfplan

Punti principali:

  • Il comando terraform plan consente di creare un piano di esecuzione, ma non di eseguirlo. Determina invece le azioni necessarie per creare la configurazione specificata nei file di configurazione. Questo modello consente di verificare se il piano di esecuzione corrisponde alle aspettative prima di apportare modifiche alle risorse effettive.
  • Il parametro -out facoltativo consente di specificare un file di output per il piano. L'uso del parametro -out garantisce che il piano esaminato sia esattamente quello che viene applicato.

Applicare un piano di esecuzione Terraform

Eseguire terraform apply per applicare il piano di esecuzione all'infrastruttura cloud.

terraform apply main.tfplan

Punti principali:

  • Il comando terraform apply di esempio presuppone che in precedenza sia stato eseguito terraform plan -out main.tfplan.
  • Se è stato specificato un nome file diverso per il parametro -out, usare lo stesso nome file nella chiamata a terraform apply.
  • Se non è stato usato il parametro -out, chiamare terraform apply senza parametri.

Le informazioni sui costi non vengono presentate durante il processo di creazione della macchina virtuale per Terraform, come per il portale di Azure. Per altre informazioni sul funzionamento dei costi per le macchine virtuali, vedere la pagina Panoramica dell'ottimizzazione dei costi.

Verificare i risultati

  1. Ottenere il nome del gruppo di risorse di Azure.

    resource_group_name=$(terraform output -raw resource_group_name)
    
  2. Eseguire az vm list con una query JMESPath per visualizzare i nomi delle macchine virtuali create nel gruppo di risorse.

    az vm list \
      --resource-group $resource_group_name \
      --query "[].{\"VM Name\":name}" -o table
    

Pulire le risorse

Quando le risorse create tramite Terraform non sono più necessarie, eseguire i passaggi seguenti:

  1. Eseguire terraform plan e specificare il flag destroy.

    terraform plan -destroy -out main.destroy.tfplan
    

    Punti principali:

    • Il comando terraform plan consente di creare un piano di esecuzione, ma non di eseguirlo. Determina invece le azioni necessarie per creare la configurazione specificata nei file di configurazione. Questo modello consente di verificare se il piano di esecuzione corrisponde alle aspettative prima di apportare modifiche alle risorse effettive.
    • Il parametro -out facoltativo consente di specificare un file di output per il piano. L'uso del parametro -out garantisce che il piano esaminato sia esattamente quello che viene applicato.
  2. Eseguire terraform apply per applicare il piano di esecuzione.

    terraform apply main.destroy.tfplan
    

Risolvere i problemi di Terraform in Azure

Risolvere i problemi comuni relativi all'uso di Terraform in Azure

Passaggi successivi