Condividi tramite


Procedura: Creare un'attività che viene completata dopo un ritardo

Questo esempio illustra come usare le concurrency::taskclassi , concurrency::cancellation_token_sourceconcurrency::cancellation_token, concurrency::task_completion_event, concurrency::timer, e concurrency::call per creare un'attività che viene completata dopo un ritardo. È possibile usare questo metodo per compilare cicli che eseguano occasionalmente il polling dei dati. È anche possibile introdurre timeout, ritardare la gestione dell'input dell'utente per un tempo predeterminato e così via.

Esempio: funzioni complete_after e cancel_after_timeout

Nell'esempio seguente vengono illustrate le funzioni complete_after e cancel_after_timeout. Tramite la funzione complete_after viene creato un oggetto task che viene completato dopo il ritardo specificato. Vengono utilizzati gli oggetti timer e call per impostare un oggetto task_completion_event dopo il ritardo specificato. Utilizzando la classe task_completion_event, è possibile definire un'attività che viene completata dopo che tramite un thread o un'altra attività viene segnalata la disponibilità di un valore. Quando l'evento è impostato, le attività del listener vengono completate e viene pianificata l'esecuzione delle relative continuazioni.

Suggerimento

Per altre informazioni sulle timer classi e call , che fanno parte della libreria degli agenti asincroni, vedere Blocchi di messaggi asincroni.

La cancel_after_timeout funzione si basa sulla complete_after funzione per annullare un'attività se tale attività non viene completata prima di un determinato timeout. Tramite la funzione cancel_after_timeout vengono create due attività. La prima attività indica l'esito positivo e viene completato al termine dell'attività specificata. La seconda attività indica un errore e viene completata dopo il timeout specificato. Tramite la funzione cancel_after_timeout viene creata un'attività di continuazione che viene eseguita al termine dell'attività di esito positivo o negativo. Se viene completata per prima l'attività di esito negativo, tramite la continuazione viene annullata l'origine del token per annullare l'intera attività.

// Creates a task that completes after the specified delay.
task<void> complete_after(unsigned int timeout)
{
    // A task completion event that is set when a timer fires.
    task_completion_event<void> tce;

    // Create a non-repeating timer.
    auto fire_once = new timer<int>(timeout, 0, nullptr, false);
    // Create a call object that sets the completion event after the timer fires.
    auto callback = new call<int>([tce](int)
    {
        tce.set();
    });

    // Connect the timer to the callback and start the timer.
    fire_once->link_target(callback);
    fire_once->start();

    // Create a task that completes after the completion event is set.
    task<void> event_set(tce);

    // Create a continuation task that cleans up resources and
    // and return that continuation task.
    return event_set.then([callback, fire_once]()
    {
        delete callback;
        delete fire_once;
    });
}

// Cancels the provided task after the specifed delay, if the task
// did not complete.
template<typename T>
task<T> cancel_after_timeout(task<T> t, cancellation_token_source cts, unsigned int timeout)
{
    // Create a task that returns true after the specified task completes.
    task<bool> success_task = t.then([](T)
    {
        return true;
    });
    // Create a task that returns false after the specified timeout.
    task<bool> failure_task = complete_after(timeout).then([]
    {
        return false;
    });

    // Create a continuation task that cancels the overall task 
    // if the timeout task finishes first.
    return (failure_task || success_task).then([t, cts](bool success)
    {
        if(!success)
        {
            // Set the cancellation token. The task that is passed as the
            // t parameter should respond to the cancellation and stop
            // as soon as it can.
            cts.cancel();
        }

        // Return the original task.
        return t;
    });
}

Esempio: Conteggio calcolo dei numeri primi

Nell'esempio seguente viene calcolato più volte il conteggio dei numeri primi nell'intervallo [0, 100000]. L'operazione ha esito negativo se non viene completata in un determinato limite di tempo. Nella funzione count_primes viene illustrato come utilizzare la funzione cancel_after_timeout. Conta il numero di numeri primi nell'intervallo specificato e ha esito negativo se l'attività non viene completata nel tempo specificato. Tramite la funzione wmain viene chiamata più volte la funzione count_primes. Ogni volta il limite di tempo viene dimezzato. Il programma termina dopo il completamento dell'operazione nel limite di tempo corrente.

// Determines whether the input value is prime.
bool is_prime(int n)
{
    if (n < 2)
        return false;
    for (int i = 2; i < n; ++i)
    {
        if ((n % i) == 0)
            return false;
    }
    return true;
}

// Counts the number of primes in the range [0, max_value].
// The operation fails if it exceeds the specified timeout.
bool count_primes(unsigned int max_value, unsigned int timeout)
{
    cancellation_token_source cts;

    // Create a task that computes the count of prime numbers.
    // The task is canceled after the specified timeout.
    auto t = cancel_after_timeout(task<size_t>([max_value, timeout, cts]
    {
        combinable<size_t> counts;
        parallel_for<unsigned int>(0, max_value + 1, [&counts, cts](unsigned int n) 
        {
            // Respond if the overall task is cancelled by canceling 
            // the current task.
            if (cts.get_token().is_canceled())
            {
                cancel_current_task();
            }
            // NOTE: You can replace the calls to is_canceled
            // and cancel_current_task with a call to interruption_point.
            // interruption_point();

            // Increment the local counter if the value is prime.
            if (is_prime(n))
            {
                counts.local()++;
            }
        });
        // Return the sum of counts across all threads.
        return counts.combine(plus<size_t>());
    }, cts.get_token()), cts, timeout);

    // Print the result.
    try
    {
        auto primes = t.get();
        wcout << L"Found " << primes << L" prime numbers within " 
              << timeout << L" ms." << endl;
        return true;
    }
    catch (const task_canceled&)
    {
        wcout << L"The task timed out." << endl;
        return false;
    }
}

int wmain()
{
    // Compute the count of prime numbers in the range [0, 100000] 
    // until the operation fails.
    // Each time the test succeeds, the time limit is halved.

    unsigned int max = 100000;
    unsigned int timeout = 5000;
    
    bool success = true;
    do
    {
        success = count_primes(max, timeout);
        timeout /= 2;
    } while (success);
}
/* Sample output:
    Found 9592 prime numbers within 5000 ms.
    Found 9592 prime numbers within 2500 ms.
    Found 9592 prime numbers within 1250 ms.
    Found 9592 prime numbers within 625 ms.
    The task timed out.
*/

Quando si usa questa tecnica per annullare le attività dopo un ritardo, le attività non avviate non verranno avviate dopo l'annullamento dell'attività complessiva. Tuttavia, è importante che qualsiasi attività a esecuzione prolungata risponda rapidamente all'annullamento. Per altre informazioni sull'annullamento delle attività, vedere Annullamento nel PPL.

Esempio di codice completo

Di seguito viene riportato il codice completo per questo esempio:

// task-delay.cpp
// compile with: /EHsc
#include <ppl.h>
#include <ppltasks.h>
#include <agents.h>
#include <iostream>

using namespace concurrency;
using namespace std;

// Creates a task that completes after the specified delay.
task<void> complete_after(unsigned int timeout)
{
    // A task completion event that is set when a timer fires.
    task_completion_event<void> tce;

    // Create a non-repeating timer.
    auto fire_once = new timer<int>(timeout, 0, nullptr, false);
    // Create a call object that sets the completion event after the timer fires.
    auto callback = new call<int>([tce](int)
    {
        tce.set();
    });

    // Connect the timer to the callback and start the timer.
    fire_once->link_target(callback);
    fire_once->start();

    // Create a task that completes after the completion event is set.
    task<void> event_set(tce);

    // Create a continuation task that cleans up resources and
    // and return that continuation task.
    return event_set.then([callback, fire_once]()
    {
        delete callback;
        delete fire_once;
    });
}

// Cancels the provided task after the specifed delay, if the task
// did not complete.
template<typename T>
task<T> cancel_after_timeout(task<T> t, cancellation_token_source cts, unsigned int timeout)
{
    // Create a task that returns true after the specified task completes.
    task<bool> success_task = t.then([](T)
    {
        return true;
    });
    // Create a task that returns false after the specified timeout.
    task<bool> failure_task = complete_after(timeout).then([]
    {
        return false;
    });

    // Create a continuation task that cancels the overall task 
    // if the timeout task finishes first.
    return (failure_task || success_task).then([t, cts](bool success)
    {
        if(!success)
        {
            // Set the cancellation token. The task that is passed as the
            // t parameter should respond to the cancellation and stop
            // as soon as it can.
            cts.cancel();
        }

        // Return the original task.
        return t;
    });
}

// Determines whether the input value is prime.
bool is_prime(int n)
{
    if (n < 2)
        return false;
    for (int i = 2; i < n; ++i)
    {
        if ((n % i) == 0)
            return false;
    }
    return true;
}

// Counts the number of primes in the range [0, max_value].
// The operation fails if it exceeds the specified timeout.
bool count_primes(unsigned int max_value, unsigned int timeout)
{
    cancellation_token_source cts;

    // Create a task that computes the count of prime numbers.
    // The task is canceled after the specified timeout.
    auto t = cancel_after_timeout(task<size_t>([max_value, timeout, cts]
    {
        combinable<size_t> counts;
        parallel_for<unsigned int>(0, max_value + 1, [&counts, cts](unsigned int n) 
        {
            // Respond if the overall task is cancelled by canceling 
            // the current task.
            if (cts.get_token().is_canceled())
            {
                cancel_current_task();
            }
            // NOTE: You can replace the calls to is_canceled
            // and cancel_current_task with a call to interruption_point.
            // interruption_point();

            // Increment the local counter if the value is prime.
            if (is_prime(n))
            {
                counts.local()++;
            }
        });
        // Return the sum of counts across all threads.
        return counts.combine(plus<size_t>());
    }, cts.get_token()), cts, timeout);

    // Print the result.
    try
    {
        auto primes = t.get();
        wcout << L"Found " << primes << L" prime numbers within " 
              << timeout << L" ms." << endl;
        return true;
    }
    catch (const task_canceled&)
    {
        wcout << L"The task timed out." << endl;
        return false;
    }
}

int wmain()
{
    // Compute the count of prime numbers in the range [0, 100000] 
    // until the operation fails.
    // Each time the test succeeds, the time limit is halved.

    unsigned int max = 100000;
    unsigned int timeout = 5000;
    
    bool success = true;
    do
    {
        success = count_primes(max, timeout);
        timeout /= 2;
    } while (success);
}
/* Sample output:
    Found 9592 prime numbers within 5000 ms.
    Found 9592 prime numbers within 2500 ms.
    Found 9592 prime numbers within 1250 ms.
    Found 9592 prime numbers within 625 ms.
    The task timed out.
*/

Compilazione del codice

Per compilare il codice, copiarlo e incollarlo in un progetto di Visual Studio oppure incollarlo in un file denominato task-delay.cpp e quindi eseguire il comando seguente in una finestra del prompt dei comandi di Visual Studio.

cl.exe /EHsc task-delay.cpp

Vedi anche

Parallelismo delle attività
Classe task (runtime di concorrenza)
Classe cancellation_token_source
Classe cancellation_token
Classe task_completion_event
Classe timer
Classe call
Blocchi dei messaggi asincroni
Annullamento nella libreria PPL