ImageEstimatorsCatalog.ConvertToGrayscale Metodo
Definizione
Importante
Alcune informazioni sono relative alla release non definitiva del prodotto, che potrebbe subire modifiche significative prima della release definitiva. Microsoft non riconosce alcuna garanzia, espressa o implicita, in merito alle informazioni qui fornite.
Creare un ImageGrayscalingEstimatoroggetto , che converte le immagini nella colonna specificata in InputColumnName immagini in scala di grigi in una nuova colonna: OutputColumnName.
public static Microsoft.ML.Transforms.Image.ImageGrayscalingEstimator ConvertToGrayscale (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default);
static member ConvertToGrayscale : Microsoft.ML.TransformsCatalog * string * string -> Microsoft.ML.Transforms.Image.ImageGrayscalingEstimator
<Extension()>
Public Function ConvertToGrayscale (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing) As ImageGrayscalingEstimator
Parametri
- catalog
- TransformsCatalog
Catalogo della trasformazione.
- outputColumnName
- String
Nome della colonna risultante dalla trasformazione di inputColumnName
.
Il tipo di dati di questa colonna sarà uguale a quello della colonna di input.
- inputColumnName
- String
Nome della colonna da cui convertire le immagini in gradazioni di grigio. Questo strumento di stima opera solo su MLImage.
Restituisce
Esempio
using System;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
public static class ConvertToGrayscale
{
// Sample that loads images from the file system, and converts them to
// grayscale.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
// Downloading a few images, and an images.tsv file, which contains a
// list of the files from the dotnet/machinelearning/test/data/images/.
// If you inspect the fileSystem, after running this line, an "images"
// folder will be created, containing 4 images, and a .tsv file
// enumerating the images.
var imagesDataFile = Microsoft.ML.SamplesUtils.DatasetUtils
.GetSampleImages();
// Preview of the content of the images.tsv file
//
// imagePath imageType
// tomato.bmp tomato
// banana.jpg banana
// hotdog.jpg hotdog
// tomato.jpg tomato
var data = mlContext.Data.CreateTextLoader(new TextLoader.Options()
{
Columns = new[]
{
new TextLoader.Column("ImagePath", DataKind.String, 0),
new TextLoader.Column("Name", DataKind.String, 1),
}
}).Load(imagesDataFile);
var imagesFolder = Path.GetDirectoryName(imagesDataFile);
// Image loading pipeline.
var pipeline = mlContext.Transforms.LoadImages("ImageObject",
imagesFolder, "ImagePath")
.Append(mlContext.Transforms.ConvertToGrayscale("Grayscale",
"ImageObject"));
var transformedData = pipeline.Fit(data).Transform(data);
PrintColumns(transformedData);
// ImagePath Name ImageObject Grayscale
// tomato.bmp tomato {Width=800, Height=534} {Width=800, Height=534}
// banana.jpg banana {Width=800, Height=288} {Width=800, Height=288}
// hotdog.jpg hotdog {Width=800, Height=391} {Width=800, Height=391}
// tomato.jpg tomato {Width=800, Height=534} {Width=800, Height=534}
}
private static void PrintColumns(IDataView transformedData)
{
Console.WriteLine("{0, -25} {1, -25} {2, -25} {3, -25}", "ImagePath",
"Name", "ImageObject", "Grayscale");
using (var cursor = transformedData.GetRowCursor(transformedData
.Schema))
{
// Note that it is best to get the getters and values *before*
// iteration, so as to facilitate buffer sharing (if applicable), and
// column -type validation once, rather than many times.
ReadOnlyMemory<char> imagePath = default;
ReadOnlyMemory<char> name = default;
MLImage imageObject = null;
MLImage grayscaleImageObject = null;
var imagePathGetter = cursor.GetGetter<ReadOnlyMemory<char>>(cursor
.Schema["ImagePath"]);
var nameGetter = cursor.GetGetter<ReadOnlyMemory<char>>(cursor
.Schema["Name"]);
var imageObjectGetter = cursor.GetGetter<MLImage>(cursor.Schema[
"ImageObject"]);
var grayscaleGetter = cursor.GetGetter<MLImage>(cursor.Schema[
"Grayscale"]);
while (cursor.MoveNext())
{
imagePathGetter(ref imagePath);
nameGetter(ref name);
imageObjectGetter(ref imageObject);
grayscaleGetter(ref grayscaleImageObject);
Console.WriteLine("{0, -25} {1, -25} {2, -25} {3, -25}",
imagePath, name, $"Width={imageObject.Width}, Height={imageObject.Height}",
$"Width={grayscaleImageObject.Width}, Height={grayscaleImageObject.Height}");
}
// Dispose the image.
imageObject.Dispose();
grayscaleImageObject.Dispose();
}
}
}
}
using System;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms.Image;
namespace Samples.Dynamic
{
class ConvertToGrayScaleInMemory
{
public static void Example()
{
var mlContext = new MLContext();
// Create an image list.
var images = new[]
{
new ImageDataPoint(2, 3, red: 0, green: 0, blue: 255), // Blue color
new ImageDataPoint(2, 3, red: 255, green: 0, blue: 0) }; // red color
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var data = mlContext.Data.LoadFromEnumerable(images);
// Convert image to gray scale.
var pipeline = mlContext.Transforms.ConvertToGrayscale("GrayImage", "Image");
// Fit the model.
var model = pipeline.Fit(data);
// Test path: image files -> IDataView -> Enumerable of Bitmaps.
var transformedData = model.Transform(data);
// Load images in DataView back to Enumerable.
var transformedDataPoints = mlContext.Data.CreateEnumerable<
ImageDataPoint>(transformedData, false);
// Print out input and output pixels.
foreach (var dataPoint in transformedDataPoints)
{
var image = dataPoint.Image;
var grayImage = dataPoint.GrayImage;
ReadOnlySpan<byte> imageData = image.Pixels;
(int alphaIndex, int redIndex, int greenIndex, int blueIndex) = image.PixelFormat switch
{
MLPixelFormat.Bgra32 => (3, 2, 1, 0),
MLPixelFormat.Rgba32 => (3, 0, 1, 2),
_ => throw new InvalidOperationException($"Image pixel format is not supported")
};
ReadOnlySpan<byte> grayImageData = grayImage.Pixels;
(int alphaIndex1, int redIndex1, int greenIndex1, int blueIndex1) = grayImage.PixelFormat switch
{
MLPixelFormat.Bgra32 => (3, 2, 1, 0),
MLPixelFormat.Rgba32 => (3, 0, 1, 2),
_ => throw new InvalidOperationException($"Image pixel format is not supported")
};
int pixelSize = image.BitsPerPixel / 8;
for (int i = 0; i < imageData.Length; i += pixelSize)
{
string pixelString = $"[A = {imageData[i + alphaIndex]}, R = {imageData[i + redIndex]}, G = {imageData[i + greenIndex]}, B = {imageData[i + blueIndex]}]";
string grayPixelString = $"[A = {grayImageData[i + alphaIndex1]}, R = {grayImageData[i + redIndex1]}, G = {grayImageData[i + greenIndex1]}, B = {grayImageData[i + blueIndex1]}]";
Console.WriteLine($"The original pixel is {pixelString} and its pixel in gray is {grayPixelString}");
}
}
// Expected output:
// The original pixel is Color[A = 255, R = 0, G = 0, B = 255] and its pixel in gray is Color[A = 255, R = 28, G = 28, B = 28]
// The original pixel is Color[A = 255, R = 0, G = 0, B = 255] and its pixel in gray is Color[A = 255, R = 28, G = 28, B = 28]
// The original pixel is Color[A = 255, R = 0, G = 0, B = 255] and its pixel in gray is Color[A = 255, R = 28, G = 28, B = 28]
// The original pixel is Color[A = 255, R = 0, G = 0, B = 255] and its pixel in gray is Color[A = 255, R = 28, G = 28, B = 28]
// The original pixel is Color[A = 255, R = 0, G = 0, B = 255] and its pixel in gray is Color[A = 255, R = 28, G = 28, B = 28]
// The original pixel is Color[A = 255, R = 0, G = 0, B = 255] and its pixel in gray is Color[A = 255, R = 28, G = 28, B = 28]
// The original pixel is Color[A = 255, R = 255, G = 0, B = 0] and its pixel in gray is Color[A = 255, R = 77, G = 77, B = 77]
// The original pixel is Color[A = 255, R = 255, G = 0, B = 0] and its pixel in gray is Color[A = 255, R = 77, G = 77, B = 77]
// The original pixel is Color[A = 255, R = 255, G = 0, B = 0] and its pixel in gray is Color[A = 255, R = 77, G = 77, B = 77]
// The original pixel is Color[A = 255, R = 255, G = 0, B = 0] and its pixel in gray is Color[A = 255, R = 77, G = 77, B = 77]
// The original pixel is Color[A = 255, R = 255, G = 0, B = 0] and its pixel in gray is Color[A = 255, R = 77, G = 77, B = 77]
// The original pixel is Color[A = 255, R = 255, G = 0, B = 0] and its pixel in gray is Color[A = 255, R = 77, G = 77, B = 77]
}
private class ImageDataPoint
{
[ImageType(3, 4)]
public MLImage Image { get; set; }
[ImageType(3, 4)]
public MLImage GrayImage { get; set; }
public ImageDataPoint()
{
Image = null;
GrayImage = null;
}
public ImageDataPoint(int width, int height, byte red, byte green, byte blue)
{
byte[] imageData = new byte[width * height * 4]; // 4 for the red, green, blue and alpha colors
for (int i = 0; i < imageData.Length; i += 4)
{
// Fill the buffer with the Bgra32 format
imageData[i] = blue;
imageData[i + 1] = green;
imageData[i + 2] = red;
imageData[i + 3] = 255;
}
Image = MLImage.CreateFromPixels(width, height, MLPixelFormat.Bgra32, imageData);
}
}
}
}