Condividi tramite


TimeSeriesCatalog.DetectChangePointBySsa Metodo

Definizione

Overload

DetectChangePointBySsa(TransformsCatalog, String, String, Double, Int32, Int32, Int32, ErrorFunction, MartingaleType, Double)

Creare SsaChangePointEstimator, che stima i punti di modifica nelle serie temporali usando l'analisi dello spettro singolare (SSA).

DetectChangePointBySsa(TransformsCatalog, String, String, Int32, Int32, Int32, Int32, ErrorFunction, MartingaleType, Double)
Obsoleti.

Creare SsaChangePointEstimator, che stima i punti di modifica nelle serie temporali usando l'analisi dello spettro singolare (SSA).

DetectChangePointBySsa(TransformsCatalog, String, String, Double, Int32, Int32, Int32, ErrorFunction, MartingaleType, Double)

Creare SsaChangePointEstimator, che stima i punti di modifica nelle serie temporali usando l'analisi dello spettro singolare (SSA).

public static Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator DetectChangePointBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, double confidence, int changeHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
static member DetectChangePointBySsa : Microsoft.ML.TransformsCatalog * string * string * double * int * int * int * Microsoft.ML.Transforms.TimeSeries.ErrorFunction * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator
<Extension()>
Public Function DetectChangePointBySsa (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Double, changeHistoryLength As Integer, trainingWindowSize As Integer, seasonalityWindowSize As Integer, Optional errorFunction As ErrorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference, Optional martingale As MartingaleType = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, Optional eps As Double = 0.1) As SsaChangePointEstimator

Parametri

catalog
TransformsCatalog

Catalogo della trasformazione.

outputColumnName
String

Nome della colonna risultante dalla trasformazione di inputColumnName. I dati della colonna sono un vettore di Double. Il vettore contiene 4 elementi: avviso (valore diverso da zero significa un punto di modifica), punteggio non elaborato, p-Value e punteggio martingale.

inputColumnName
String

Nome della colonna da trasformare. I dati della colonna devono essere Single. Se impostato su null, il valore di outputColumnName verrà usato come origine.

confidence
Double

Attendibilità per il rilevamento dei punti di modifica nell'intervallo [0, 100].

changeHistoryLength
Int32

Dimensioni della finestra scorrevole per il calcolo del valore p.

trainingWindowSize
Int32

Numero di punti dall'inizio della sequenza utilizzata per il training.

seasonalityWindowSize
Int32

Limite superiore sulla stagionalità rilevante più grande nella serie temporale di input.

errorFunction
ErrorFunction

Funzione usata per calcolare l'errore tra il valore previsto e il valore osservato.

martingale
MartingaleType

Martingale utilizzato per l'assegnazione dei punteggi.

eps
Double

Parametro epsilon per Power martingale.

Restituisce

Esempio

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class DetectChangePointBySsaBatchPrediction
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot). The estimator is applied then to
        // identify points where data distribution changed. This estimator can
        // account for temporal seasonality in the data.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a recurring pattern and then a
            // change in trend
            const int SeasonalitySize = 5;
            const int TrainingSeasons = 3;
            const int TrainingSize = SeasonalitySize * TrainingSeasons;
            var data = new List<TimeSeriesData>()
            {
                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                //This is a change point
                new TimeSeriesData(0),
                new TimeSeriesData(100),
                new TimeSeriesData(200),
                new TimeSeriesData(300),
                new TimeSeriesData(400),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup estimator arguments
            var inputColumnName = nameof(TimeSeriesData.Value);
            var outputColumnName = nameof(ChangePointPrediction.Prediction);

            // The transformed data.
            var transformedData = ml.Transforms.DetectChangePointBySsa(
                outputColumnName, inputColumnName, 95.0d, 8, TrainingSize,
                SeasonalitySize + 1).Fit(dataView).Transform(dataView);

            // Getting the data of the newly created column as an IEnumerable of
            // ChangePointPrediction.
            var predictionColumn = ml.Data.CreateEnumerable<ChangePointPrediction>(
                transformedData, reuseRowObject: false);

            Console.WriteLine(outputColumnName + " column obtained " +
                "post-transformation.");

            Console.WriteLine("Data\tAlert\tScore\tP-Value\tMartingale value");
            int k = 0;
            foreach (var prediction in predictionColumn)
                PrintPrediction(data[k++].Value, prediction);

            // Prediction column obtained post-transformation.
            // Data    Alert   Score   P-Value Martingale value
            // 0       0      -2.53    0.50    0.00
            // 1       0      -0.01    0.01    0.00
            // 2       0       0.76    0.14    0.00
            // 3       0       0.69    0.28    0.00
            // 4       0       1.44    0.18    0.00
            // 0       0      -1.84    0.17    0.00
            // 1       0       0.22    0.44    0.00
            // 2       0       0.20    0.45    0.00
            // 3       0       0.16    0.47    0.00
            // 4       0       1.33    0.18    0.00
            // 0       0      -1.79    0.07    0.00
            // 1       0       0.16    0.50    0.00
            // 2       0       0.09    0.50    0.00
            // 3       0       0.08    0.45    0.00
            // 4       0       1.31    0.12    0.00
            // 0       0      -1.79    0.07    0.00
            // 100     1      99.16    0.00    4031.94     <-- alert is on, predicted changepoint
            // 200     0     185.23    0.00    731260.87
            // 300     0     270.40    0.01    3578470.47
            // 400     0     357.11    0.03    45298370.86
        }

        private static void PrintPrediction(float value, ChangePointPrediction
            prediction) =>
            Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", value,
            prediction.Prediction[0], prediction.Prediction[1],
            prediction.Prediction[2], prediction.Prediction[3]);

        class ChangePointPrediction
        {
            [VectorType(4)]
            public double[] Prediction { get; set; }
        }

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }
    }
}

Si applica a

DetectChangePointBySsa(TransformsCatalog, String, String, Int32, Int32, Int32, Int32, ErrorFunction, MartingaleType, Double)

Attenzione

This API method is deprecated, please use the overload with confidence parameter of type double.

Creare SsaChangePointEstimator, che stima i punti di modifica nelle serie temporali usando l'analisi dello spettro singolare (SSA).

[System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")]
public static Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator DetectChangePointBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int changeHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
public static Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator DetectChangePointBySsa (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int confidence, int changeHistoryLength, int trainingWindowSize, int seasonalityWindowSize, Microsoft.ML.Transforms.TimeSeries.ErrorFunction errorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference, Microsoft.ML.Transforms.TimeSeries.MartingaleType martingale = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, double eps = 0.1);
[<System.Obsolete("This API method is deprecated, please use the overload with confidence parameter of type double.")>]
static member DetectChangePointBySsa : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * Microsoft.ML.Transforms.TimeSeries.ErrorFunction * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator
static member DetectChangePointBySsa : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * Microsoft.ML.Transforms.TimeSeries.ErrorFunction * Microsoft.ML.Transforms.TimeSeries.MartingaleType * double -> Microsoft.ML.Transforms.TimeSeries.SsaChangePointEstimator
<Extension()>
Public Function DetectChangePointBySsa (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, confidence As Integer, changeHistoryLength As Integer, trainingWindowSize As Integer, seasonalityWindowSize As Integer, Optional errorFunction As ErrorFunction = Microsoft.ML.Transforms.TimeSeries.ErrorFunction.SignedDifference, Optional martingale As MartingaleType = Microsoft.ML.Transforms.TimeSeries.MartingaleType.Power, Optional eps As Double = 0.1) As SsaChangePointEstimator

Parametri

catalog
TransformsCatalog

Catalogo della trasformazione.

outputColumnName
String

Nome della colonna risultante dalla trasformazione di inputColumnName. I dati della colonna sono un vettore di Double. Il vettore contiene 4 elementi: avviso (valore diverso da zero significa un punto di modifica), punteggio non elaborato, p-Value e punteggio martingale.

inputColumnName
String

Nome della colonna da trasformare. I dati della colonna devono essere Single. Se impostato su null, il valore di outputColumnName verrà usato come origine.

confidence
Int32

Attendibilità per il rilevamento dei punti di modifica nell'intervallo [0, 100].

changeHistoryLength
Int32

Dimensioni della finestra scorrevole per il calcolo del valore p.

trainingWindowSize
Int32

Numero di punti dall'inizio della sequenza utilizzata per il training.

seasonalityWindowSize
Int32

Limite superiore sulla stagionalità rilevante più grande nella serie temporale di input.

errorFunction
ErrorFunction

Funzione usata per calcolare l'errore tra il valore previsto e il valore osservato.

martingale
MartingaleType

Martingale utilizzato per l'assegnazione dei punteggi.

eps
Double

Parametro epsilon per Power martingale.

Restituisce

Attributi

Esempio

using System;
using System.Collections.Generic;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class DetectChangePointBySsaBatchPrediction
    {
        // This example creates a time series (list of Data with the i-th element
        // corresponding to the i-th time slot). The estimator is applied then to
        // identify points where data distribution changed. This estimator can
        // account for temporal seasonality in the data.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Generate sample series data with a recurring pattern and then a
            // change in trend
            const int SeasonalitySize = 5;
            const int TrainingSeasons = 3;
            const int TrainingSize = SeasonalitySize * TrainingSeasons;
            var data = new List<TimeSeriesData>()
            {
                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                new TimeSeriesData(0),
                new TimeSeriesData(1),
                new TimeSeriesData(2),
                new TimeSeriesData(3),
                new TimeSeriesData(4),

                //This is a change point
                new TimeSeriesData(0),
                new TimeSeriesData(100),
                new TimeSeriesData(200),
                new TimeSeriesData(300),
                new TimeSeriesData(400),
            };

            // Convert data to IDataView.
            var dataView = ml.Data.LoadFromEnumerable(data);

            // Setup estimator arguments
            var inputColumnName = nameof(TimeSeriesData.Value);
            var outputColumnName = nameof(ChangePointPrediction.Prediction);

            // The transformed data.
            var transformedData = ml.Transforms.DetectChangePointBySsa(
                outputColumnName, inputColumnName, 95.0d, 8, TrainingSize,
                SeasonalitySize + 1).Fit(dataView).Transform(dataView);

            // Getting the data of the newly created column as an IEnumerable of
            // ChangePointPrediction.
            var predictionColumn = ml.Data.CreateEnumerable<ChangePointPrediction>(
                transformedData, reuseRowObject: false);

            Console.WriteLine(outputColumnName + " column obtained " +
                "post-transformation.");

            Console.WriteLine("Data\tAlert\tScore\tP-Value\tMartingale value");
            int k = 0;
            foreach (var prediction in predictionColumn)
                PrintPrediction(data[k++].Value, prediction);

            // Prediction column obtained post-transformation.
            // Data    Alert   Score   P-Value Martingale value
            // 0       0      -2.53    0.50    0.00
            // 1       0      -0.01    0.01    0.00
            // 2       0       0.76    0.14    0.00
            // 3       0       0.69    0.28    0.00
            // 4       0       1.44    0.18    0.00
            // 0       0      -1.84    0.17    0.00
            // 1       0       0.22    0.44    0.00
            // 2       0       0.20    0.45    0.00
            // 3       0       0.16    0.47    0.00
            // 4       0       1.33    0.18    0.00
            // 0       0      -1.79    0.07    0.00
            // 1       0       0.16    0.50    0.00
            // 2       0       0.09    0.50    0.00
            // 3       0       0.08    0.45    0.00
            // 4       0       1.31    0.12    0.00
            // 0       0      -1.79    0.07    0.00
            // 100     1      99.16    0.00    4031.94     <-- alert is on, predicted changepoint
            // 200     0     185.23    0.00    731260.87
            // 300     0     270.40    0.01    3578470.47
            // 400     0     357.11    0.03    45298370.86
        }

        private static void PrintPrediction(float value, ChangePointPrediction
            prediction) =>
            Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}\t{4:0.00}", value,
            prediction.Prediction[0], prediction.Prediction[1],
            prediction.Prediction[2], prediction.Prediction[3]);

        class ChangePointPrediction
        {
            [VectorType(4)]
            public double[] Prediction { get; set; }
        }

        class TimeSeriesData
        {
            public float Value;

            public TimeSeriesData(float value)
            {
                Value = value;
            }
        }
    }
}

Si applica a