Che cos’è l’Intelligence in tempo reale?
L'intelligence in tempo reale è un potente servizio che consente a tutti gli utenti dell'organizzazione di estrarre informazioni dettagliate e visualizzare i dati in movimento. Offre una soluzione end-to-end per scenari basati su eventi, dati in streaming e log di dati. Indipendentemente dal fatto che si tratti di gigabyte o petabyte, tutti i dati dell'organizzazione in movimento convergeranno nell'hub in tempo reale. Connette senza problemi i dati basati sul tempo con varie origini usando connettori senza codice, consentendo informazioni visive immediate, analisi geospaziali e reazioni basate su trigger che fanno parte di un catalogo dati a livello di organizzazione.
Dopo aver connesso facilmente qualsiasi flusso di dati, l'intera soluzione SaaS diventa accessibile. L’Intelligence in tempo reale gestisce l'inserimento, la trasformazione, l'archiviazione, l'analisi, la visualizzazione, il rilevamento, l'IA e le azioni in tempo reale. I dati rimangono protetti, regolamentati e integrati in tutta l’organizzazione, perfettamente allineati a tutte le offerte di Fabric. L'Intelligence in tempo reale trasforma i dati in una risorsa dinamica e pratica che determina il valore dell'intera organizzazione.
L'Intelligence in tempo reale può aiutarmi?
L'intelligence in tempo reale può essere usata per l'analisi dei dati, informazioni visive immediate, centralizzazione dei dati in movimento per un'organizzazione, azioni sui dati, query efficienti, trasformazione e archiviazione di grandi volumi di dati strutturati o non strutturati. Sia che sia necessario valutare i dati dai sistemi IoT, dai log di sistema, da testo libero, dai dati semi strutturati o dai dati per l'utilizzo da parte di altri utenti dell'organizzazione, l'Intelligence in tempo reale offre una soluzione versatile.
Anche se viene chiamata "in tempo reale", i dati non devono essere trasmessi a velocità e volumi elevati. L'Intelligence in tempo reale offre soluzioni basate sugli eventi, anziché soluzioni basate sulla pianificazione. I componenti di Intelligence in tempo reale sono basati su servizi Microsoft di base attendibili e insieme aumentano le funzionalità generali di Fabric per offrire soluzioni basate sugli eventi.
L’utilizzo di applicazioni di Intelligence in tempo reale comprende un'ampia gamma di scenari aziendali, ad esempio automotive, produzione, IoT, rilevamento delle frodi, gestione delle operazioni aziendali e rilevamento anomalie.
Come uso l’Intelligence in tempo reale?
L'Intelligence in tempo reale in Microsoft Fabric offre funzionalità che, se sfruttate insieme, consentono la creazione di soluzioni di Intelligence in tempo reale a supporto dei processi aziendali e di progettazione.
L'hub in tempo reale funge da catalogo centralizzato all'interno dell'organizzazione. Semplifica l'accesso, l'aggiunta, l'esplorazione e la condivisione dei dati. Espandendo l'intervallo di origini dati, si ottengono informazioni più dettagliate e chiarezza visiva in vari domini. Importante, questo hub garantisce che i dati non siano disponibili solo, ma anche accessibili a tutti, promuovendo un rapido processo decisionale e azioni informate. La condivisione di dati di streaming da origini diverse sfrutta il potenziale per creare una business intelligence completa in tutta l’organizzazione.
Dopo aver selezionato un flusso dall'organizzazione o esserti connesso a origini esterne o interne, si possono gli strumenti per il consumo dei dati in Intelligence in tempo reale per esplorare i dati. Gli strumenti di consumo dei dati usano il processo di esplorazione visiva dei dati ed eseguono il drill-down sulle informazioni dettagliate riguardanti i dati. È possibile accedere ai dati nuovi e comprendere facilmente la struttura dei dati, i modelli, le anomalie, le quantità di previsione e le frequenze dei dati. Di conseguenza, è possibile agire o prendere decisioni intelligenti in base ai dati. Le dashboard in tempo reale sono dotati di interazioni predefinite che semplificano il processo di comprensione dei dati, rendendoli accessibili a chiunque voglia prendere decisioni basate su di essi in movimento usando strumenti visivi, il Linguaggio Naturale e Copilot.
Queste informazioni dettagliate possono essere trasformate in azioni con Fabric Activator, quando si configurano avvisi da varie parti di Fabric per reagire ai modelli di dati o alle condizioni in tempo reale.
Ricerca per categorie interagire con i componenti di Intelligence in tempo reale?
Individuare i dati di streaming
L'hub in tempo reale viene usato per individuare e gestire i dati di streaming. Gli eventi dell'hub in tempo reale sono un catalogo di dati in movimento e contengono:
Flussi di dati: Vengono visualizzati tutti i flussi dei dati attivamente in esecuzione in Fabric a cui si ha accesso.
Origini Microsoft: individuare facilmente le origini di streaming disponibili e configurare rapidamente l'inserimento di tali origini in Fabric, ad esempio: Hub eventi di Azure, hub IoT di Azure, SQL DB Change Data Capture (CDC) di Azure, Cosmos DB CDC di Azure, PostgreSQL DB CDC.
Eventi Fabric: le funzionalità basate sugli eventi supportano le notifiche in tempo reale e l'elaborazione dei dati. È possibile monitorare e reagire agli eventi, compresi gli eventi dell'elemento dell'area di lavoro Fabric e gli eventi Archiviazione BLOB di Azure. Questi eventi possono essere usati per attivare altre azioni o flussi di lavoro, ad esempio richiamare una pipeline di dati o inviare una notifica tramite posta elettronica. È anche possibile inviare questi eventi ad altre destinazioni tramite eventstream.
Questi dati sono tutti presentati in un formato facilmente utilizzabile e sono disponibili per tutti i carichi di lavoro di Fabric.
Connettersi ai dati di streaming
I flussi di eventi sono il modo della piattaforma Fabric per acquisire, trasformare e instradare volumi elevati di eventi in tempo reale a varie destinazioni senza codice. I flussi di eventi supportano più origini dati e destinazioni di dati, tra cui un'ampia gamma di connettori a origini esterne, ad esempio cluster Apache Kafka, feed di acquisizione dei dati delle modifiche del database, origini di streaming AWS (Policys) e Google (GCP Pub/Sub).
Elaborare il flusso dei dati
Usando le funzionalità di elaborazione degli eventi in Eventstreams, è possibile filtrare, pulire i dati, trasformare, creare aggregazioni finestra e rilevare i dati nella forma desiderata. È anche possibile usare le funzionalità di routing basate sul contenuto per inviare dati a destinazioni diverse in base ai filtri. Un'altra funzionalità, flussi di eventi derivati, consente di creare nuovi flussi in seguito a trasformazioni e/o aggregazioni che possono essere condivise ai consumer nell'hub in tempo reale.
Esplorare e analizzare i dati
Gli eventhouse sono il motore di analisi ideale per elaborare i dati in movimento. Sono specificamente personalizzati in base al tempo, agli eventi di streaming con dati strutturati, semi strutturati e non strutturati. Questi dati vengono indicizzati e partizionati automaticamente in base al tempo di inserimento, offrendo funzionalità di query analitiche incredibilmente veloci e complesse sui dati a granularità elevata. I dati archiviati negli eventhouse possono essere resi disponibili in OneLake per l'utilizzo da parte di altre esperienze di Fabric.
I dati indicizzati e partizionati archiviati negli eventhouse sono pronti per query velocissime usando varie opzioni di codice, livello di codice basso o senza codice in Fabric. I dati possono essere sottoposti a query in KQL (Linguaggio di query Kusto) nativo o usando T-SQL nel set di query KQL. Il copilota Kusto, insieme all'esperienza di esplorazione delle query senza codice, semplifica il processo di analisi dei dati sia per gli utenti KQL esperti che per i data scientist dei citizen. KQL è un linguaggio semplice ma potente per eseguire query su dati strutturati, semi strutturati e non strutturati. Il linguaggio è espressivo, legge e comprendere facilmente la finalità della query ed è ottimizzato per le esperienze di creazione.
Visualizzare le informazioni dettagliate sui dati
Queste informazioni dettagliate sui dati possono essere visualizzate in set di query KQL, dashboard in tempo reale e report di Power BI, e l'inserimento dei dati alle informazioni dettagliate è una questione di secondi. Le opzioni di visualizzazione vanno dal no-code alle esperienze completamente specializzate, dando la possibilità sia al principiante che all'esperto insights explorer di visualizzare i dati in forma di grafici e tabelle. È possibile usare segnali visivi per eseguire operazioni di filtraggio e aggregazione sui risultati delle query e usare un elenco completo di visualizzazioni predefinite. Queste informazioni dettagliate possono essere visualizzate nei report di Power BI e nelle dashboard in tempo reale, che possono avere alert basati sulle informazioni dettagliate riguardanti i dati.
Azioni trigger
Gli alert monitorano la modifica dei dati e eseguono automaticamente azioni quando vengono rilevati modelli o condizioni. I dati possono essere trasmessi nell'hub in tempo reale o osservati da una query Kusto o da un report di Power BI. Quando vengono soddisfatte determinate condizioni o una certa logica, viene eseguita un'azione, ad esempio l’invio di alert agli utenti, l'esecuzione di elementi di processo di Fabric come una pipeline o l'avvio dei flussi di lavoro di Power Automate. La logica può essere una soglia semplicemente definita, un modello come eventi che si verificano ripetutamente in un periodo di tempo o i risultati di una logica complessa definita da una query KQL. L'attivatore trasforma le informazioni dettagliate guidate dagli eventi in vantaggi aziendali interattivi.
l'integrazione con altre esperienze Fabric
- Instradare gli eventi dai flussi di eventi alle destinazioni degli elementi di Infrastruttura
- Generare eventi a partire da elementi Fabric inserendoli nell’hub in tempo reale
- Si possono accedere ai dati in OneLake dall'Intelligence in tempo reale in diversi modi:
- I dati di OneLake possono essere sottoposti a query da Intelligence in tempo reale come scorciatoia da tastiera
- Usare i dati caricati nell'intelligence in tempo reale come dati sottostanti per la visualizzazione in un report di Power BI
- Usare i dati caricati nell'intelligence in tempo reale per l'analisi nei notebook di Fabric in Data Engineering