QUniform Class
QUniform distribution configuration.
- Inheritance
-
azure.ai.ml.entities._job.sweep.search_space.UniformQUniform
Constructor
QUniform(min_value: int | float | None = None, max_value: int | float | None = None, q: int | None = None, **kwargs: Any)
Parameters
Name | Description |
---|---|
min_value
|
Minimum value of the distribution. Default value: None
|
max_value
|
Maximum value of the distribution. Default value: None
|
q
|
Quantization factor. Default value: None
|
Examples
Configuring QUniform distributions for a hyperparameter sweep on a Command job.
from azure.ai.ml import command
job = command(
inputs=dict(kernel="linear", penalty=1.0),
compute=cpu_cluster,
environment=f"{job_env.name}:{job_env.version}",
code="./scripts",
command="python scripts/train.py --kernel $kernel --penalty $penalty",
experiment_name="sklearn-iris-flowers",
)
# we can reuse an existing Command Job as a function that we can apply inputs to for the sweep configurations
from azure.ai.ml.sweep import QUniform, TruncationSelectionPolicy, Uniform
job_for_sweep = job(
kernel=Uniform(min_value=0.0005, max_value=0.005),
penalty=QUniform(min_value=0.05, max_value=0.75, q=1),
)
sweep_job = job_for_sweep.sweep(
sampling_algorithm="random",
primary_metric="best_val_acc",
goal="Maximize",
max_total_trials=8,
max_concurrent_trials=4,
early_termination_policy=TruncationSelectionPolicy(delay_evaluation=5, evaluation_interval=2),
)
Collabora con noi su GitHub
L'origine di questo contenuto è disponibile in GitHub, in cui è anche possibile creare ed esaminare i problemi e le richieste pull. Per ulteriori informazioni, vedere la guida per i collaboratori.
Azure SDK for Python