データストア管理を SDK v2 にアップグレードする
Azure Machine Learning データストアでは、Azure のデータ ストレージへの接続情報が安全に保持されるため、ご自身のスクリプトでそのコードを書く必要はありません。 V2 データストアの概念は、V1 と比べてほとんど変わりません。 違いは、SQL に似たデータ ソースを、Azure Machine Learning データストアを通じてサポートしないという点です。 Azure Machine Learning データのインポートとエクスポート機能を使用して、SQL に似たデータ ソースをサポートします。
この記事では、SDK v1 と SDK v2 のシナリオの比較を示します。
account_key を使用して Azure BLOB コンテナーからデータストアを作成する
SDK v1
blob_datastore_name='azblobsdk' # Name of the datastore to workspace container_name=os.getenv("BLOB_CONTAINER", "<my-container-name>") # Name of Azure blob container account_name=os.getenv("BLOB_ACCOUNTNAME", "<my-account-name>") # Storage account name account_key=os.getenv("BLOB_ACCOUNT_KEY", "<my-account-key>") # Storage account access key blob_datastore = Datastore.register_azure_blob_container(workspace=ws, datastore_name=blob_datastore_name, container_name=container_name, account_name=account_name, account_key=account_key)
SDK v2
from azure.ai.ml.entities import AzureBlobDatastore from azure.ai.ml import MLClient ml_client = MLClient.from_config() store = AzureBlobDatastore( name="blob-protocol-example", description="Datastore pointing to a blob container using wasbs protocol.", account_name="mytestblobstore", container_name="data-container", protocol="wasbs", credentials={ "account_key": "XXXxxxXXXxXXXXxxXXXXXxXXXXXxXxxXxXXXxXXXxXXxxxXXxxXXXxXxXXXxxXxxXXXXxxxxxXXxxxxxxXXXxXXX" }, ) ml_client.create_or_update(store)
sas_token を使用して Azure BLOB コンテナーからデータストアを作成する
SDK v1
blob_datastore_name='azblobsdk' # Name of the datastore to workspace container_name=os.getenv("BLOB_CONTAINER", "<my-container-name>") # Name of Azure blob container sas_token=os.getenv("BLOB_SAS_TOKEN", "<my-sas-token>") # Sas token blob_datastore = Datastore.register_azure_blob_container(workspace=ws, datastore_name=blob_datastore_name, container_name=container_name, sas_token=sas_token)
SDK v2
from azure.ai.ml.entities import AzureBlobDatastore from azure.ai.ml import MLClient ml_client = MLClient.from_config() store = AzureBlobDatastore( name="blob-sas-example", description="Datastore pointing to a blob container using SAS token.", account_name="mytestblobstore", container_name="data-container", credentials=SasTokenCredentials( sas_token= "?xx=XXXX-XX-XX&xx=xxxx&xxx=xxx&xx=xxxxxxxxxxx&xx=XXXX-XX-XXXXX:XX:XXX&xx=XXXX-XX-XXXXX:XX:XXX&xxx=xxxxx&xxx=XXxXXXxxxxxXXXXXXXxXxxxXXXXXxxXXXXXxXXXXxXXXxXXxXX" ), ) ml_client.create_or_update(store)
ID ベースの認証を使用して Azure BLOB コンテナーからデータストアを作成する
- SDK v1
blob_datastore = Datastore.register_azure_blob_container(workspace=ws,
datastore_name='credentialless_blob',
container_name='my_container_name',
account_name='my_account_name')
SDK v2
from azure.ai.ml.entities import AzureBlobDatastore from azure.ai.ml import MLClient ml_client = MLClient.from_config() store = AzureBlobDatastore( name="", description="", account_name="", container_name="" ) ml_client.create_or_update(store)
ワークスペースからデータストアを取得する
SDK v1
# Get a named datastore from the current workspace datastore = Datastore.get(ws, datastore_name='your datastore name')
# List all datastores registered in the current workspace datastores = ws.datastores for name, datastore in datastores.items(): print(name, datastore.datastore_type)
SDK v2
from azure.ai.ml import MLClient from azure.identity import DefaultAzureCredential #Enter details of your Azure Machine Learning workspace subscription_id = '<SUBSCRIPTION_ID>' resource_group = '<RESOURCE_GROUP>' workspace_name = '<AZUREML_WORKSPACE_NAME>' ml_client = MLClient(credential=DefaultAzureCredential(), subscription_id=subscription_id, resource_group_name=resource_group) datastore = ml_client.datastores.get(name='your datastore name')
SDK v1 と SDK v2 の主要機能のマッピング
次のステップ
詳細については、次を参照してください。