SvmLightLoaderSaverCatalog.CreateSvmLightLoader メソッド
定義
重要
一部の情報は、リリース前に大きく変更される可能性があるプレリリースされた製品に関するものです。 Microsoft は、ここに記載されている情報について、明示または黙示を問わず、一切保証しません。
SVM ライト形式ファイルを読み込むローダーを作成します。 SvmLightLoader.
public static Microsoft.ML.Data.SvmLightLoader CreateSvmLightLoader (this Microsoft.ML.DataOperationsCatalog catalog, long? numberOfRows = default, int inputSize = 0, bool zeroBased = false, Microsoft.ML.Data.IMultiStreamSource dataSample = default);
static member CreateSvmLightLoader : Microsoft.ML.DataOperationsCatalog * Nullable<int64> * int * bool * Microsoft.ML.Data.IMultiStreamSource -> Microsoft.ML.Data.SvmLightLoader
<Extension()>
Public Function CreateSvmLightLoader (catalog As DataOperationsCatalog, Optional numberOfRows As Nullable(Of Long) = Nothing, Optional inputSize As Integer = 0, Optional zeroBased As Boolean = false, Optional dataSample As IMultiStreamSource = Nothing) As SvmLightLoader
パラメーター
- catalog
- DataOperationsCatalog
- inputSize
- Int32
[特徴] 列の特徴の数。 0 を指定した場合、ローダーは 、で指定 dataSample
されたファイル サンプルを調べることによってそれを決定します。
- zeroBased
- Boolean
ファイルに 0 から始まるインデックスが含まれている場合は、このパラメーターを true に設定する必要があります。 1 から始まる場合は false に設定する必要があります。
- dataSample
- IMultiStreamSource
[特徴] 列の特徴の数を決定するために使用するデータ サンプル。
戻り値
例
using System;
using System.IO;
using System.Text;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.DataOperations
{
public static class LoadingSvmLight
{
// This examples shows how to load data with SvmLightLoader.
public static void Example()
{
// Create a random SVM light format file.
var random = new Random(42);
var dataDirectoryName = "DataDir";
Directory.CreateDirectory(dataDirectoryName);
var fileName = Path.Combine(dataDirectoryName, $"SVM_Data.csv");
using (var fs = File.CreateText(fileName))
{
// Write random lines in SVM light format
for (int line = 0; line < 10; line++)
{
var sb = new StringBuilder();
if (random.NextDouble() > 0.5)
sb.Append("1 ");
else
sb.Append("-1 ");
if (line % 2 == 0)
sb.Append("cost:1 ");
else
sb.Append("cost:2 ");
for (int i = 1; i <= 10; i++)
{
if (random.NextDouble() > 0.5)
continue;
sb.Append($"{i}:{random.NextDouble()} ");
}
fs.WriteLine(sb.ToString());
}
}
// Create an SvmLightLoader.
var mlContext = new MLContext();
var file = new MultiFileSource(fileName);
var loader = mlContext.Data.CreateSvmLightLoader(dataSample: file);
// Load a single file from path.
var svmData = loader.Load(file);
PrintSchema(svmData);
// Expected Output:
// Column Label type Single
// Column Weight type Single
// Column GroupId type Key<UInt64, 0 - 18446744073709551613>
// Column Comment type String
// Column Features type Vector<Single, 10>
PrintData(svmData);
// Expected Output:
// 1 1 0 0 0.2625927 0 0 0.7612506 0.2573214 0 0.3809696 0.5174511
// -1 1 0 0 0 0.7051522 0 0 0.7111546 0.9062127 0 0
// -1 1 0 0 0 0.535722 0 0 0.1491191 0.05100901 0 0
// -1 1 0 0.6481459 0.04449836 0 0 0.4203662 0 0 0.01325378 0.2674384
// -1 1 0 0 0.7978093 0.5134962 0.008952909 0 0.003074009 0.6541431 0.9135142 0
// -1 1 0 0.3727672 0.4369507 0 0 0.2973725 0 0 0 0.8816807
// 1 1 0 0.1031429 0.3332489 0 0.1346936 0.5916625 0 0 0 0
// 1 1 0 0 0 0.3454075 0 0.2197472 0.03848049 0.5923384 0.09373277 0
// -1 1 0 0.7511514 0 0.0420841 0 0 0.9262196 0 0.545344 0
// 1 1 0 0.02958358 0.9334617 0 0 0.8833956 0.2947684 0 0 0
// If the loader is created without a data sample we need to specify the number of features expected in the file.
loader = mlContext.Data.CreateSvmLightLoader(inputSize: 10);
svmData = loader.Load(file);
PrintSchema(svmData);
PrintData(svmData);
}
private static void PrintSchema(IDataView svmData)
{
foreach (var col in svmData.Schema)
Console.WriteLine($"Column {col.Name} type {col.Type}");
}
private static void PrintData(IDataView svmData)
{
using (var cursor = svmData.GetRowCursor(svmData.Schema))
{
var labelGetter = cursor.GetGetter<float>(svmData.Schema["Label"]);
var weightGetter = cursor.GetGetter<float>(svmData.Schema["Weight"]);
var featuresGetter = cursor.GetGetter<VBuffer<float>>(svmData.Schema["Features"]);
VBuffer<float> features = default;
while (cursor.MoveNext())
{
float label = default;
labelGetter(ref label);
float weight = default;
weightGetter(ref weight);
featuresGetter(ref features);
Console.WriteLine($"{label} {weight} {string.Join(' ', features.DenseValues())}");
}
}
}
}
}