次の方法で共有


MklComponentsCatalog.VectorWhiten メソッド

定義

既知の共分散行列を持つランダム変数のベクトルで満たされた列を、共変性が同一性行列である一連の新しい変数に取り込みます。これは、それらが相関されておらず、それぞれが分散 1 を持っていることを意味します。

public static Microsoft.ML.Transforms.VectorWhiteningEstimator VectorWhiten (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, Microsoft.ML.Transforms.WhiteningKind kind = Microsoft.ML.Transforms.WhiteningKind.ZeroPhaseComponentAnalysis, float epsilon = 1E-05, int maximumNumberOfRows = 100000, int rank = 0);
static member VectorWhiten : Microsoft.ML.TransformsCatalog * string * string * Microsoft.ML.Transforms.WhiteningKind * single * int * int -> Microsoft.ML.Transforms.VectorWhiteningEstimator
<Extension()>
Public Function VectorWhiten (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional kind As WhiteningKind = Microsoft.ML.Transforms.WhiteningKind.ZeroPhaseComponentAnalysis, Optional epsilon As Single = 1E-05, Optional maximumNumberOfRows As Integer = 100000, Optional rank As Integer = 0) As VectorWhiteningEstimator

パラメーター

catalog
TransformsCatalog

変換のカタログ。

outputColumnName
String

の変換によって生成される列の inputColumnName名前。

inputColumnName
String

変換する列の名前。 に null設定すると、その値が outputColumnName ソースとして使用されます。

kind
WhiteningKind

ホワイトニングの種類 (PCA/ZCA)。

epsilon
Single

定数を白くすると、0 による除算が防止されます。

maximumNumberOfRows
Int32

変換のトレーニングに使用される行の最大数。

rank
Int32

PCA のホワイトニングの場合は、保持するコンポーネントの数を示します。

戻り値

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public sealed class VectorWhiten
    {

        /// This example requires installation of additional nuget package 
        /// <a href="https://www.nuget.org/packages/Microsoft.ML.Mkl.Components/">Microsoft.ML.Mkl.Components</a>.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Get a small dataset as an IEnumerable and convert it to an IDataView.
            var data = GetVectorOfNumbersData();
            var trainData = ml.Data.LoadFromEnumerable(data);

            // Preview of the data.
            //
            // Features
            // 0   1   2   3   4   5   6   7   8   9
            // 1   2   3   4   5   6   7   8   9   0  
            // 2   3   4   5   6   7   8   9   0   1
            // 3   4   5   6   7   8   9   0   1   2
            // 4   5   6   7   8   9   0   1   2   3
            // 5   6   7   8   9   0   1   2   3   4
            // 6   7   8   9   0   1   2   3   4   5

            // A small printing utility.
            Action<string, IEnumerable<VBuffer<float>>> printHelper = (colName,
                column) =>
            {
                Console.WriteLine($"{colName} column obtained " +
                    $"post-transformation.");

                foreach (var row in column)
                    Console.WriteLine(string.Join(" ", row.DenseValues().Select(x =>
                        x.ToString("f3"))) + " ");
            };

            // A pipeline to project Features column into white noise vector.
            var whiteningPipeline = ml.Transforms.VectorWhiten(nameof(
                SampleVectorOfNumbersData.Features), kind: Microsoft.ML.Transforms
                .WhiteningKind.ZeroPhaseComponentAnalysis);

            // The transformed (projected) data.
            var transformedData = whiteningPipeline.Fit(trainData).Transform(
                trainData);

            // Getting the data of the newly created column, so we can preview it.
            var whitening = transformedData.GetColumn<VBuffer<float>>(
                transformedData.Schema[nameof(SampleVectorOfNumbersData.Features)]);

            printHelper(nameof(SampleVectorOfNumbersData.Features), whitening);

            // Features column obtained post-transformation.
            //
            //-0.394 -0.318 -0.243 -0.168  0.209  0.358  0.433  0.589  0.873  2.047
            //-0.034  0.030  0.094  0.159  0.298  0.427  0.492  0.760  1.855 -1.197
            // 0.099  0.161  0.223  0.286  0.412  0.603  0.665  1.797 -1.265 -0.172
            // 0.211  0.277  0.344  0.410  0.606  1.267  1.333 -1.340 -0.205  0.065
            // 0.454  0.523  0.593  0.664  1.886 -0.757 -0.687 -0.022  0.176  0.310
            // 0.863  0.938  1.016  1.093 -1.326 -0.096 -0.019  0.189  0.330  0.483
        }

        private class SampleVectorOfNumbersData
        {
            [VectorType(10)]
            public float[] Features { get; set; }
        }

        /// <summary>
        /// Returns a few rows of the infertility dataset.
        /// </summary>
        private static IEnumerable<SampleVectorOfNumbersData>
            GetVectorOfNumbersData()
        {
            var data = new List<SampleVectorOfNumbersData>();
            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 0,
                1, 2, 3, 4, 5, 6, 7, 8, 9 }
            });

            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 1,
                2, 3, 4, 5, 6, 7, 8, 9, 0 }
            });

            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 2, 3, 4, 5, 6, 7, 8, 9, 0, 1 }
            });
            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, }
            });
            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 5, 6, 7, 8, 9, 0, 1, 2, 3, 4 }
            });
            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 6, 7, 8, 9, 0, 1, 2, 3, 4, 5 }
            });
            return data;
        }
    }
}
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public sealed class VectorWhitenWithOptions
    {
        /// This example requires installation of additional nuget package
        /// <a href="https://www.nuget.org/packages/Microsoft.ML.Mkl.Components/">Microsoft.ML.Mkl.Components</a>.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var ml = new MLContext();

            // Get a small dataset as an IEnumerable and convert it to an IDataView.
            var data = GetVectorOfNumbersData();
            var trainData = ml.Data.LoadFromEnumerable(data);

            // Preview of the data.
            //
            // Features
            // 0   1   2   3   4   5   6   7   8   9
            // 1   2   3   4   5   6   7   8   9   0  
            // 2   3   4   5   6   7   8   9   0   1
            // 3   4   5   6   7   8   9   0   1   2
            // 4   5   6   7   8   9   0   1   2   3
            // 5   6   7   8   9   0   1   2   3   4
            // 6   7   8   9   0   1   2   3   4   5

            // A small printing utility.
            Action<string, IEnumerable<VBuffer<float>>> printHelper = (colName,
                column) =>
            {
                Console.WriteLine($"{colName} column obtained" +
                    $"post-transformation.");

                foreach (var row in column)
                    Console.WriteLine(string.Join(" ", row.DenseValues().Select(x =>
                        x.ToString("f3"))) + " ");
            };


            // A pipeline to project Features column into white noise vector.
            var whiteningPipeline = ml.Transforms.VectorWhiten(nameof(
                SampleVectorOfNumbersData.Features), kind: Microsoft.ML.Transforms
                .WhiteningKind.PrincipalComponentAnalysis, rank: 4);

            // The transformed (projected) data.
            var transformedData = whiteningPipeline.Fit(trainData).Transform(
                trainData);

            // Getting the data of the newly created column, so we can preview it.
            var whitening = transformedData.GetColumn<VBuffer<float>>(
                transformedData.Schema[nameof(SampleVectorOfNumbersData.Features)]);

            printHelper(nameof(SampleVectorOfNumbersData.Features), whitening);

            // Features column obtained post-transformation.
            // -0.979  0.867  1.449  1.236
            // -1.030  1.012  0.426 -0.902
            // -1.047  0.677 -0.946 -1.060
            // -1.029  0.019 -1.502  1.108
            // -0.972 -1.338 -0.028  0.614
            // -0.938 -1.405  0.752 -0.967
        }

        private class SampleVectorOfNumbersData
        {
            [VectorType(10)]
            public float[] Features { get; set; }
        }

        /// <summary>
        /// Returns a few rows of the infertility dataset.
        /// </summary>
        private static IEnumerable<SampleVectorOfNumbersData>
            GetVectorOfNumbersData()
        {
            var data = new List<SampleVectorOfNumbersData>();
            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 0,
                1, 2, 3, 4, 5, 6, 7, 8, 9 }
            });

            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 1,
                2, 3, 4, 5, 6, 7, 8, 9, 0 }
            });

            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 2, 3, 4, 5, 6, 7, 8, 9, 0, 1 }
            });
            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, }
            });
            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 5, 6, 7, 8, 9, 0, 1, 2, 3, 4 }
            });
            data.Add(new SampleVectorOfNumbersData
            {
                Features = new float[10] { 6, 7, 8, 9, 0, 1, 2, 3, 4, 5 }
            });
            return data;
        }
    }
}

適用対象