다음을 통해 공유


ML용 Databricks Runtime 7.1(EoS)

참고 항목

이 Databricks Runtime 버전에 대한 지원이 종료되었습니다. 지원 종료 날짜는 지원 종료 기록을 참조하세요. 지원되는 모든 Databricks Runtime 버전은 Databricks Runtime 릴리스 정보 버전 및 호환성을 참조하세요.

Databricks는 2020년 7월에 이 버전을 릴리스했습니다.

Machine Learning용 Databricks Runtime 7.1은 Databricks Runtime 7.1(EoS)을 기반으로 즉시 사용 가능한 기계 학습 및 데이터 과학 환경을 제공합니다. Databricks Runtime ML에는 TensorFlow, PyTorch 및 XGBoost를 포함하여 널리 사용되는 많은 기계 학습 라이브러리가 포함되어 있습니다. 또한 Horovod를 사용하여 분산 딥 러닝 학습을 지원합니다.

Databricks Runtime ML 클러스터 만들기 지침을 포함한 자세한 내용은 Databricks에서의 AI 및 기계 학습을 참조하세요.

새로운 기능 및 주요 변경 내용

Databricks Runtime 7.1 ML은 Databricks Runtime 7.1을 기반으로 빌드되었습니다. Apache Spark MLlib 및 SparkR을 포함하여 Databricks Runtime 7.1의 새로운 기능에 대한 자세한 내용은 Databricks Runtime 7.1(EoS) 릴리스 정보를 참조하세요.

Databricks Runtime ML Python 환경의 주요 변경 내용

이 섹션에서는 Databricks Runtime 7.0 ML(EoS)과 비교하여 설치된 Databricks Runtime ML Python 환경의 주요 변경 내용에 대해 설명합니다. 또한 Databricks Runtime 7.1(EoS)에서 Databricks Runtime Python 환경의 주요 변경 내용을 검토해야 합니다. 설치된 Python 패키지 및 버전의 전체 목록은 Python 라이브러리를 참조하세요.

pip 및 conda 매직 명령이 기본적으로 사용하도록 설정됨(공개 미리 보기)

Databricks Runtime ML 6.4 이상에서는 클러스터 구성 설정을 통해 %pip%conda 매직 명령을 사용할 수 있었습니다. 이러한 명령은 이제 기본적으로 사용하도록 설정됩니다. 자세한 내용은 Notebook 범위 Python 라이브러리를 참조하세요.

업그레이드된 Python 패키지

  • pillow 7.0.0 -> 7.1.0
  • pytorch 1.5.0 -> 1.5.1
  • torchvision 0.6.0 -> 0.6.1
  • horovod 0.19.1 -> 0.19.5
  • mlflow 1.8.0 -> 1.9.1

추가된 Python 패키지

  • spark-tensorflow-distributor: 0.1.0

ML Spark 패키지, Java 및 Scala 라이브러리 변경 내용

다음 패키지가 업그레이드됩니다.

  • mlflow-client: 1.9.1

시스템 환경

Databricks Runtime 7.1 ML의 시스템 환경은 다음과 같이 Databricks Runtime 7.1과 다릅니다.

라이브러리

다음 섹션에서는 Databricks Runtime 7.1에 포함된 라이브러리와 다른 Databricks Runtime 7.1 ML에 포함된 라이브러리를 나열합니다.

이 구역의 내용:

최상위 계층 라이브러리

Databricks Runtime 7.1 ML에는 다음과 같은 최상위 라이브러리가 포함되어 있습니다.

Python 라이브러리

Databricks Runtime 7.1 ML은 Python 패키지 관리에 Conda를 사용하며 많은 자주 사용되는 ML 패키지를 포함합니다. 다음 섹션에서는 Databricks Runtime 7.1 ML용 Conda 환경에 대해 설명합니다.

CPU 클러스터의 Python

name: databricks-ml
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.9.0=py37_0
  - asn1crypto=1.3.0=py37_0
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.1.7=py37h7b6447c_1
  - blas=1.0=mkl
  - blinker=1.4=py37_0
  - boto3=1.12.0=py_0
  - botocore=1.15.0=py_0
  - c-ares=1.15.0=h7b6447c_1001
  - ca-certificates=2020.6.24=0
  - cachetools=4.1.0=py_1
  - certifi=2020.6.20=py37_0
  - cffi=1.14.0=py37h2e261b9_0
  - chardet=3.0.4=py37_1003
  - click=7.0=py37_0
  - cloudpickle=1.3.0=py_0
  - configparser=3.7.4=py37_0
  - cpuonly=1.0=0
  - cryptography=2.8=py37h1ba5d50_0
  - cycler=0.10.0=py37_0
  - cython=0.29.15=py37he6710b0_0
  - decorator=4.4.1=py_0
  - dill=0.3.1.1=py37_1
  - docutils=0.15.2=py37_0
  - entrypoints=0.3=py37_0
  - flask=1.1.1=py_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.18.2=py37_1
  - gast=0.3.3=py_0
  - gitdb=4.0.5=py_0
  - gitdb2=4.0.2=py_0
  - gitpython=3.0.5=py_0
  - google-auth=1.11.2=py_0
  - google-auth-oauthlib=0.4.1=py_2
  - google-pasta=0.2.0=py_0
  - grpcio=1.27.2=py37hf8bcb03_0
  - gunicorn=20.0.4=py37_0
  - h5py=2.10.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.8=py37_0
  - intel-openmp=2020.0=166
  - ipykernel=5.1.4=py37h39e3cac_0
  - ipython=7.12.0=py37h5ca1d4c_0
  - ipython_genutils=0.2.0=py37_0
  - isodate=0.6.0=py_1
  - itsdangerous=1.1.0=py37_0
  - jedi=0.14.1=py37_0
  - jinja2=2.11.1=py_0
  - jmespath=0.9.4=py_0
  - joblib=0.14.1=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=5.3.4=py37_0
  - jupyter_core=4.6.1=py37_0
  - kiwisolver=1.1.0=py37he6710b0_0
  - krb5=1.16.4=h173b8e3_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.37=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.11.4=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtiff=4.1.0=h2733197_0
  - lightgbm=2.3.0=py37he6710b0_0
  - lz4-c=1.8.1.2=h14c3975_0
  - mako=1.1.2=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h7b6447c_0
  - matplotlib-base=3.1.3=py37hef1b27d_0
  - mkl=2020.0=166
  - mkl-service=2.3.0=py37he904b0f_0
  - mkl_fft=1.0.15=py37ha843d7b_0
  - mkl_random=1.1.0=py37hd6b4f25_0
  - ncurses=6.2=he6710b0_1
  - networkx=2.4=py_0
  - ninja=1.9.0=py37hfd86e86_0
  - nltk=3.4.5=py37_0
  - numpy=1.18.1=py37h4f9e942_0
  - numpy-base=1.18.1=py37hde5b4d6_1
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py37_0
  - openssl=1.1.1g=h7b6447c_0
  - packaging=20.1=py_0
  - pandas=1.0.1=py37h0573a6f_0
  - paramiko=2.7.1=py_0
  - parso=0.5.2=py_0
  - patsy=0.5.1=py37_0
  - pexpect=4.8.0=py37_0
  - pickleshare=0.7.5=py37_0
  - pillow=7.0.0=py37hb39fc2d_0
  - pip=20.0.2=py37_3
  - plotly=4.8.1=py_0
  - prompt_toolkit=3.0.3=py_0
  - protobuf=3.11.4=py37he6710b0_0
  - psutil=5.6.7=py37h7b6447c_0
  - psycopg2=2.8.4=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.7=py_0
  - pycparser=2.19=py37_0
  - pygments=2.5.2=py_0
  - pyjwt=1.7.1=py37_0
  - pynacl=1.3.0=py37h7b6447c_0
  - pyodbc=4.0.30=py37he6710b0_0
  - pyopenssl=19.1.0=py37_0
  - pyparsing=2.4.6=py_0
  - pysocks=1.7.1=py37_0
  - python=3.7.6=h0371630_2
  - python-dateutil=2.8.1=py_0
  - python-editor=1.0.4=py_0
  - pytorch=1.5.1=py3.7_cpu_0
  - pytz=2019.3=py_0
  - pyzmq=18.1.1=py37he6710b0_0
  - readline=7.0=h7b6447c_5
  - requests=2.22.0=py37_1
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py37_2
  - rsa=4.0=py_0
  - s3transfer=0.3.3=py37_0
  - scikit-learn=0.22.1=py37hd81dba3_0
  - scipy=1.4.1=py37h0b6359f_0
  - setuptools=45.2.0=py37_0
  - simplejson=3.17.0=py37h7b6447c_0
  - six=1.14.0=py37_0
  - smmap=3.0.2=py_0
  - sqlite=3.31.1=h62c20be_1
  - sqlparse=0.3.0=py_0
  - statsmodels=0.11.0=py37h7b6447c_0
  - tabulate=0.8.3=py37_0
  - tk=8.6.8=hbc83047_0
  - torchvision=0.6.1=py37_cpu
  - tornado=6.0.3=py37h7b6447c_3
  - tqdm=4.42.1=py_0
  - traitlets=4.3.3=py37_0
  - unixodbc=2.3.7=h14c3975_0
  - urllib3=1.25.8=py37_0
  - wcwidth=0.1.8=py_0
  - websocket-client=0.56.0=py37_0
  - werkzeug=1.0.0=py_0
  - wheel=0.34.2=py37_0
  - wrapt=1.11.2=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - zeromq=4.3.1=he6710b0_3
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - astunparse==1.6.3
    - azure-core==1.6.0
    - azure-storage-blob==12.3.2
    - databricks-cli==0.11.0
    - diskcache==4.1.0
    - docker==4.2.2
    - gorilla==0.3.0
    - horovod==0.19.5
    - hyperopt==0.2.4.db2
    - keras-preprocessing==1.1.2
    - koalas==1.0.1
    - mleap==0.16.0
    - mlflow==1.9.1
    - msrest==0.6.17
    - opt-einsum==3.2.1
    - petastorm==0.9.2
    - pyarrow==0.15.1
    - pyyaml==5.3.1
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - spark-tensorflow-distributor==0.1.0
    - sparkdl==2.1.0-db1
    - tensorboard==2.2.2
    - tensorboard-plugin-wit==1.7.0
    - tensorflow-cpu==2.2.0
    - tensorflow-estimator==2.2.0
    - termcolor==1.1.0
    - xgboost==1.1.1
prefix: /databricks/conda/envs/databricks-ml

GPU 클러스터의 Python

name: databricks-ml-gpu
channels:
  - pytorch
  - defaults
dependencies:
  - _libgcc_mutex=0.1=main
  - absl-py=0.9.0=py37_0
  - asn1crypto=1.3.0=py37_0
  - astor=0.8.0=py37_0
  - backcall=0.1.0=py37_0
  - backports=1.0=py_2
  - bcrypt=3.1.7=py37h7b6447c_1
  - blas=1.0=mkl
  - blinker=1.4=py37_0
  - boto3=1.12.0=py_0
  - botocore=1.15.0=py_0
  - c-ares=1.15.0=h7b6447c_1001
  - ca-certificates=2020.6.24=0
  - cachetools=4.1.0=py_1
  - certifi=2020.6.20=py37_0
  - cffi=1.14.0=py37h2e261b9_0
  - chardet=3.0.4=py37_1003
  - click=7.0=py37_0
  - cloudpickle=1.3.0=py_0
  - configparser=3.7.4=py37_0
  - cryptography=2.8=py37h1ba5d50_0
  - cudatoolkit=10.1.243=h6bb024c_0
  - cycler=0.10.0=py37_0
  - cython=0.29.15=py37he6710b0_0
  - decorator=4.4.1=py_0
  - dill=0.3.1.1=py37_1
  - docutils=0.15.2=py37_0
  - entrypoints=0.3=py37_0
  - flask=1.1.1=py_1
  - freetype=2.9.1=h8a8886c_1
  - future=0.18.2=py37_1
  - gast=0.3.3=py_0
  - gitdb=4.0.5=py_0
  - gitdb2=4.0.2=py_0
  - gitpython=3.0.5=py_0
  - google-auth=1.11.2=py_0
  - google-auth-oauthlib=0.4.1=py_2
  - google-pasta=0.2.0=py_0
  - grpcio=1.27.2=py37hf8bcb03_0
  - gunicorn=20.0.4=py37_0
  - h5py=2.10.0=py37h7918eee_0
  - hdf5=1.10.4=hb1b8bf9_0
  - icu=58.2=he6710b0_3
  - idna=2.8=py37_0
  - intel-openmp=2020.0=166
  - ipykernel=5.1.4=py37h39e3cac_0
  - ipython=7.12.0=py37h5ca1d4c_0
  - ipython_genutils=0.2.0=py37_0
  - isodate=0.6.0=py_1
  - itsdangerous=1.1.0=py37_0
  - jedi=0.14.1=py37_0
  - jinja2=2.11.1=py_0
  - jmespath=0.9.4=py_0
  - joblib=0.14.1=py_0
  - jpeg=9b=h024ee3a_2
  - jupyter_client=5.3.4=py37_0
  - jupyter_core=4.6.1=py37_0
  - kiwisolver=1.1.0=py37he6710b0_0
  - krb5=1.16.4=h173b8e3_0
  - ld_impl_linux-64=2.33.1=h53a641e_7
  - libedit=3.1.20181209=hc058e9b_0
  - libffi=3.2.1=hd88cf55_4
  - libgcc-ng=9.1.0=hdf63c60_0
  - libgfortran-ng=7.3.0=hdf63c60_0
  - libpng=1.6.37=hbc83047_0
  - libpq=11.2=h20c2e04_0
  - libprotobuf=3.11.4=hd408876_0
  - libsodium=1.0.16=h1bed415_0
  - libstdcxx-ng=9.1.0=hdf63c60_0
  - libtiff=4.1.0=h2733197_0
  - lightgbm=2.3.0=py37he6710b0_0
  - lz4-c=1.8.1.2=h14c3975_0
  - mako=1.1.2=py_0
  - markdown=3.1.1=py37_0
  - markupsafe=1.1.1=py37h7b6447c_0
  - matplotlib-base=3.1.3=py37hef1b27d_0
  - mkl=2020.0=166
  - mkl-service=2.3.0=py37he904b0f_0
  - mkl_fft=1.0.15=py37ha843d7b_0
  - mkl_random=1.1.0=py37hd6b4f25_0
  - ncurses=6.2=he6710b0_1
  - networkx=2.4=py_0
  - ninja=1.9.0=py37hfd86e86_0
  - nltk=3.4.5=py37_0
  - numpy=1.18.1=py37h4f9e942_0
  - numpy-base=1.18.1=py37hde5b4d6_1
  - oauthlib=3.1.0=py_0
  - olefile=0.46=py37_0
  - openssl=1.1.1g=h7b6447c_0
  - packaging=20.1=py_0
  - pandas=1.0.1=py37h0573a6f_0
  - paramiko=2.7.1=py_0
  - parso=0.5.2=py_0
  - patsy=0.5.1=py37_0
  - pexpect=4.8.0=py37_0
  - pickleshare=0.7.5=py37_0
  - pillow=7.0.0=py37hb39fc2d_0
  - pip=20.0.2=py37_3
  - plotly=4.8.1=py_0
  - prompt_toolkit=3.0.3=py_0
  - protobuf=3.11.4=py37he6710b0_0
  - psutil=5.6.7=py37h7b6447c_0
  - psycopg2=2.8.4=py37h1ba5d50_0
  - ptyprocess=0.6.0=py37_0
  - pyasn1=0.4.8=py_0
  - pyasn1-modules=0.2.7=py_0
  - pycparser=2.19=py37_0
  - pygments=2.5.2=py_0
  - pyjwt=1.7.1=py37_0
  - pynacl=1.3.0=py37h7b6447c_0
  - pyodbc=4.0.30=py37he6710b0_0
  - pyopenssl=19.1.0=py37_0
  - pyparsing=2.4.6=py_0
  - pysocks=1.7.1=py37_0
  - python=3.7.6=h0371630_2
  - python-dateutil=2.8.1=py_0
  - python-editor=1.0.4=py_0
  - pytorch=1.5.1=py3.7_cuda10.1.243_cudnn7.6.3_0
  - pytz=2019.3=py_0
  - pyzmq=18.1.1=py37he6710b0_0
  - readline=7.0=h7b6447c_5
  - requests=2.22.0=py37_1
  - requests-oauthlib=1.3.0=py_0
  - retrying=1.3.3=py37_2
  - rsa=4.0=py_0
  - s3transfer=0.3.3=py37_0
  - scikit-learn=0.22.1=py37hd81dba3_0
  - scipy=1.4.1=py37h0b6359f_0
  - setuptools=45.2.0=py37_0
  - simplejson=3.17.0=py37h7b6447c_0
  - six=1.14.0=py37_0
  - smmap=3.0.2=py_0
  - sqlite=3.31.1=h62c20be_1
  - sqlparse=0.3.0=py_0
  - statsmodels=0.11.0=py37h7b6447c_0
  - tabulate=0.8.3=py37_0
  - tk=8.6.8=hbc83047_0
  - torchvision=0.6.1=py37_cu101
  - tornado=6.0.3=py37h7b6447c_3
  - tqdm=4.42.1=py_0
  - traitlets=4.3.3=py37_0
  - unixodbc=2.3.7=h14c3975_0
  - urllib3=1.25.8=py37_0
  - wcwidth=0.1.8=py_0
  - websocket-client=0.56.0=py37_0
  - werkzeug=1.0.0=py_0
  - wheel=0.34.2=py37_0
  - wrapt=1.11.2=py37h7b6447c_0
  - xz=5.2.4=h14c3975_4
  - zeromq=4.3.1=he6710b0_3
  - zlib=1.2.11=h7b6447c_3
  - zstd=1.3.7=h0b5b093_0
  - pip:
    - astunparse==1.6.3
    - azure-core==1.6.0
    - azure-storage-blob==12.3.2
    - databricks-cli==0.11.0
    - diskcache==4.1.0
    - docker==4.2.2
    - gorilla==0.3.0
    - horovod==0.19.5
    - hyperopt==0.2.4.db1
    - keras-preprocessing==1.1.2
    - koalas==1.0.1
    - mleap==0.16.0
    - mlflow==1.9.1
    - msrest==0.6.17
    - opt-einsum==3.2.1
    - petastorm==0.9.2
    - pyarrow==0.15.1
    - pyyaml==5.3.1
    - querystring-parser==1.2.4
    - seaborn==0.10.0
    - spark-tensorflow-distributor==0.1.0
    - sparkdl==2.1.0-db1
    - tensorboard==2.2.2
    - tensorboard-plugin-wit==1.7.0
    - tensorflow==2.2.0
    - tensorflow-estimator==2.2.0
    - termcolor==1.1.0
    - xgboost==1.1.1
prefix: /databricks/conda/envs/databricks-ml-gpu

Python 모듈이 포함된 Spark 패키지

Spark 패키지 Python 모듈 버전
graphframes graphframes 0.8.0-db2-spark3.0

R 라이브러리

R 라이브러리는 Databricks Runtime 7.1의 R 라이브러리와 동일합니다.

Java 및 Scala 라이브러리(Scala 2.12 클러스터)

Databricks Runtime 7.1의 Java 및 Scala 라이브러리 외에도 Databricks Runtime 7.1 ML에는 다음 JAR이 포함되어 있습니다.

그룹 ID 아티팩트 ID 버전
com.typesafe.akka akka-actor_2.12 2.5.23
ml.combust.mleap mleap-databricks-runtime_2.12 0.17.1-4882dc3
ml.dmlc xgboost4j-spark_2.12 1.0.0
ml.dmlc xgboost4j_2.12 1.0.0
org.mlflow mlflow-client 1.9.1
org.scala-lang.modules scala-java8-compat_2.12 0.8.0
org.tensorflow spark-tensorflow-connector_2.12 1.15.0