다음을 통해 공유


ImageEstimatorsCatalog.ExtractPixels 메서드

정의

열에 ImagePixelExtractingEstimator지정된 데이터에서 새 열 inputColumnNameoutputColumnName로 픽셀 값을 추출하는 를 만듭니다.

public static Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator ExtractPixels (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator.ColorBits colorsToExtract = Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator+ColorBits.Rgb, Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator.ColorsOrder orderOfExtraction = Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator+ColorsOrder.ARGB, bool interleavePixelColors = false, float offsetImage = 0, float scaleImage = 1, bool outputAsFloatArray = true);
static member ExtractPixels : Microsoft.ML.TransformsCatalog * string * string * Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator.ColorBits * Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator.ColorsOrder * bool * single * single * bool -> Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator
<Extension()>
Public Function ExtractPixels (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional colorsToExtract As ImagePixelExtractingEstimator.ColorBits = Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator+ColorBits.Rgb, Optional orderOfExtraction As ImagePixelExtractingEstimator.ColorsOrder = Microsoft.ML.Transforms.Image.ImagePixelExtractingEstimator+ColorsOrder.ARGB, Optional interleavePixelColors As Boolean = false, Optional offsetImage As Single = 0, Optional scaleImage As Single = 1, Optional outputAsFloatArray As Boolean = true) As ImagePixelExtractingEstimator

매개 변수

catalog
TransformsCatalog

변환의 카탈로그입니다.

outputColumnName
String

의 변환으로 인해 발생하는 열의 이름입니다 inputColumnName. 이 열의 데이터 형식은 에 따라 outputAsFloatArray또는 ByteSingle 알려진 크기의 벡터가 됩니다.

inputColumnName
String

이미지가 있는 열의 이름입니다. 이 예측 도구는 를 통해 MLImage작동합니다.

colorsToExtract
ImagePixelExtractingEstimator.ColorBits

이미지에서 추출할 색입니다.

orderOfExtraction
ImagePixelExtractingEstimator.ColorsOrder

픽셀에서 색을 추출할 순서입니다.

interleavePixelColors
Boolean

픽셀 색을 인터리브할지 여부, 즉 순서대로 유지 orderOfExtraction 하거나 Planner 형식으로 유지할지 여부: 모든 픽셀의 한 색에 대한 모든 값, 다른 색에 대한 모든 값 등입니다.

offsetImage
Single

각 픽셀의 색 값을 이 양만큼 오프셋합니다. 이전 scaleImage의 색 값에 적용됩니다.

scaleImage
Single

각 픽셀의 색 값을 이 크기만큼 조정합니다. 다음의 offsetImage색 값에 적용됩니다.

outputAsFloatArray
Boolean

출력 배열을 float 배열로 사용합니다. false이면 바이트 배열로 출력하고 및 scaleImage를 무시합니다offsetImage.

반환

예제

using System;
using System.IO;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;

namespace Samples.Dynamic
{
    public static class ExtractPixels
    {
        // Sample that loads the images from the file system, resizes them (
        // ExtractPixels requires a resizing operation), and extracts the values of
        // the pixels as a vector.
        public static void Example()
        {
            // Create a new ML context, for ML.NET operations. It can be used for
            // exception tracking and logging, as well as the source of randomness.
            var mlContext = new MLContext();

            // Downloading a few images, and an images.tsv file, which contains a
            // list of the files from the dotnet/machinelearning/test/data/images/.
            // If you inspect the fileSystem, after running this line, an "images"
            // folder will be created, containing 4 images, and a .tsv file
            // enumerating the images.
            var imagesDataFile = Microsoft.ML.SamplesUtils.DatasetUtils
                .GetSampleImages();

            // Preview of the content of the images.tsv file
            //
            // imagePath    imageType
            // tomato.bmp   tomato
            // banana.jpg   banana
            // hotdog.jpg   hotdog
            // tomato.jpg   tomato

            var data = mlContext.Data.CreateTextLoader(new TextLoader.Options()
            {
                Columns = new[]
                {
                        new TextLoader.Column("ImagePath", DataKind.String, 0),
                        new TextLoader.Column("Name", DataKind.String, 1),
                }
            }).Load(imagesDataFile);

            var imagesFolder = Path.GetDirectoryName(imagesDataFile);
            // Image loading pipeline.
            var pipeline = mlContext.Transforms.LoadImages("ImageObject",
                imagesFolder, "ImagePath")
                .Append(mlContext.Transforms.ResizeImages("ImageObjectResized",
                    inputColumnName: "ImageObject", imageWidth: 100, imageHeight:
                    100))
                .Append(mlContext.Transforms.ExtractPixels("Pixels",
                    "ImageObjectResized"));

            var transformedData = pipeline.Fit(data).Transform(data);

            // Preview the transformedData.
            PrintColumns(transformedData);

            // ImagePath    Name         ImageObject               ImageObjectResized        Pixels
            // tomato.bmp   tomato       {Width=800, Height=534}   {Width=100, Height=100}   255,255,255,255,255...
            // banana.jpg   banana       {Width=800, Height=288}   {Width=100, Height=100}   255,255,255,255,255...
            // hotdog.jpg   hotdog       {Width=800, Height=391}   {Width=100, Height=100}   255,255,255,255,255...
            // tomato.jpg   tomato       {Width=800, Height=534}   {Width=100, Height=100}   255,255,255,255,255...
        }

        private static void PrintColumns(IDataView transformedData)
        {
            Console.WriteLine("{0, -25} {1, -25} {2, -25} {3, -25} {4, -25}",
                "ImagePath", "Name", "ImageObject", "ImageObjectResized", "Pixels");

            using (var cursor = transformedData.GetRowCursor(transformedData
                .Schema))
            {
                // Note that it is best to get the getters and values *before*
                // iteration, so as to facilitate buffer sharing (if applicable), and
                // column -type validation once, rather than many times.

                ReadOnlyMemory<char> imagePath = default;
                ReadOnlyMemory<char> name = default;
                MLImage imageObject = null;
                MLImage resizedImageObject = null;
                VBuffer<float> pixels = default;

                var imagePathGetter = cursor.GetGetter<ReadOnlyMemory<char>>(cursor
                    .Schema["ImagePath"]);

                var nameGetter = cursor.GetGetter<ReadOnlyMemory<char>>(cursor
                    .Schema["Name"]);

                var imageObjectGetter = cursor.GetGetter<MLImage>(cursor.Schema[
                    "ImageObject"]);

                var resizedImageGetter = cursor.GetGetter<MLImage>(cursor.Schema[
                    "ImageObjectResized"]);

                var pixelsGetter = cursor.GetGetter<VBuffer<float>>(cursor.Schema[
                    "Pixels"]);

                while (cursor.MoveNext())
                {

                    imagePathGetter(ref imagePath);
                    nameGetter(ref name);
                    imageObjectGetter(ref imageObject);
                    resizedImageGetter(ref resizedImageObject);
                    pixelsGetter(ref pixels);

                    Console.WriteLine("{0, -25} {1, -25} {2, -25} {3, -25} " +
                        "{4, -25}", imagePath, name,
                        $"Width={imageObject.Width}, Height={imageObject.Height}",
                        $"Width={resizedImageObject.Width}, Height={resizedImageObject.Height}",
                        string.Join(",", pixels.DenseValues().Take(5)) + "...");
                }

                // Dispose the image.
                imageObject.Dispose();
                resizedImageObject.Dispose();
            }
        }
    }
}
using System;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms.Image;

namespace Samples.Dynamic
{
    public static class ApplyOnnxModelWithInMemoryImages
    {
        // Example of applying ONNX transform on in-memory images.
        public static void Example()
        {
            // Download the squeeznet image model from ONNX model zoo, version 1.2
            // https://github.com/onnx/models/tree/master/vision/classification/squeezenet or use
            // Microsoft.ML.Onnx.TestModels nuget.
            // It's a multiclass classifier. It consumes an input "data_0" and
            // produces an output "softmaxout_1".
            var modelPath = @"squeezenet\00000001\model.onnx";

            // Create ML pipeline to score the data using OnnxScoringEstimator
            var mlContext = new MLContext();

            // Create in-memory data points. Its Image/Scores field is the
            // input /output of the used ONNX model.
            var dataPoints = new ImageDataPoint[]
            {
                new ImageDataPoint(red: 255, green: 0, blue: 0), // Red color
                new ImageDataPoint(red: 0, green: 128, blue: 0)  // Green color
            };

            // Convert training data to IDataView, the general data type used in
            // ML.NET.
            var dataView = mlContext.Data.LoadFromEnumerable(dataPoints);

            // Create a ML.NET pipeline which contains two steps. First,
            // ExtractPixle is used to convert the 224x224 image to a 3x224x224
            // float tensor. Then the float tensor is fed into a ONNX model with an
            // input called "data_0" and an output called "softmaxout_1". Note that
            // "data_0" and "softmaxout_1" are model input and output names stored
            // in the used ONNX model file. Users may need to inspect their own
            // models to get the right input and output column names.
            // Map column "Image" to column "data_0"
            // Map column "data_0" to column "softmaxout_1"
            var pipeline = mlContext.Transforms.ExtractPixels("data_0", "Image")
                .Append(mlContext.Transforms.ApplyOnnxModel("softmaxout_1",
                "data_0", modelPath));

            var model = pipeline.Fit(dataView);
            var onnx = model.Transform(dataView);

            // Convert IDataView back to IEnumerable<ImageDataPoint> so that user
            // can inspect the output, column "softmaxout_1", of the ONNX transform.
            // Note that Column "softmaxout_1" would be stored in ImageDataPont
            //.Scores because the added attributed [ColumnName("softmaxout_1")]
            // tells that ImageDataPont.Scores is equivalent to column
            // "softmaxout_1".
            var transformedDataPoints = mlContext.Data.CreateEnumerable<
                ImageDataPoint>(onnx, false).ToList();

            // The scores are probabilities of all possible classes, so they should
            // all be positive.
            foreach (var dataPoint in transformedDataPoints)
            {
                var firstClassProb = dataPoint.Scores.First();
                var lastClassProb = dataPoint.Scores.Last();
                Console.WriteLine("The probability of being the first class is " +
                    (firstClassProb * 100) + "%.");

                Console.WriteLine($"The probability of being the last class is " +
                    (lastClassProb * 100) + "%.");
            }

            // Expected output:
            //  The probability of being the first class is 0.002542659%.
            //  The probability of being the last class is 0.0292684%.
            //  The probability of being the first class is 0.02258059%.
            //  The probability of being the last class is 0.394428%.
        }

        // This class is used in Example() to describe data points which will be
        // consumed by ML.NET pipeline.
        private class ImageDataPoint
        {
            // Height of Image.
            private const int height = 224;

            // Width of Image.
            private const int width = 224;

            // Image will be consumed by ONNX image multiclass classification model.
            [ImageType(height, width)]
            public MLImage Image { get; set; }

            // Expected output of ONNX model. It contains probabilities of all
            // classes. Note that the ColumnName below should match the output name
            // in the used ONNX model file.
            [ColumnName("softmaxout_1")]
            public float[] Scores { get; set; }

            public ImageDataPoint()
            {
                Image = null;
            }

            public ImageDataPoint(byte red, byte green, byte blue)
            {
                byte[] imageData = new byte[width * height * 4]; // 4 for the red, green, blue and alpha colors
                for (int i = 0; i < imageData.Length; i += 4)
                {
                    // Fill the buffer with the Bgra32 format
                    imageData[i] = blue;
                    imageData[i + 1] = green;
                    imageData[i + 2] = red;
                    imageData[i + 3] = 255;
                }

                Image = MLImage.CreateFromPixels(width, height, MLPixelFormat.Bgra32, imageData);
            }
        }
    }
}

적용 대상