TimeSeriesCatalog.DetectAnomalyBySrCnn 메서드
정의
중요
일부 정보는 릴리스되기 전에 상당 부분 수정될 수 있는 시험판 제품과 관련이 있습니다. Microsoft는 여기에 제공된 정보에 대해 어떠한 명시적이거나 묵시적인 보증도 하지 않습니다.
SRCNN 알고리즘을 사용하여 시간 변칙을 검색하는 Create SrCnnAnomalyEstimator.
public static Microsoft.ML.Transforms.TimeSeries.SrCnnAnomalyEstimator DetectAnomalyBySrCnn (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int windowSize = 64, int backAddWindowSize = 5, int lookaheadWindowSize = 5, int averagingWindowSize = 3, int judgementWindowSize = 21, double threshold = 0.3);
public static Microsoft.ML.Transforms.TimeSeries.SrCnnAnomalyEstimator DetectAnomalyBySrCnn (this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName, int windowSize = 64, int backAddWindowSize = 5, int lookaheadWindowSize = 5, int averageingWindowSize = 3, int judgementWindowSize = 21, double threshold = 0.3);
static member DetectAnomalyBySrCnn : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * int * double -> Microsoft.ML.Transforms.TimeSeries.SrCnnAnomalyEstimator
static member DetectAnomalyBySrCnn : Microsoft.ML.TransformsCatalog * string * string * int * int * int * int * int * double -> Microsoft.ML.Transforms.TimeSeries.SrCnnAnomalyEstimator
<Extension()>
Public Function DetectAnomalyBySrCnn (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, Optional windowSize As Integer = 64, Optional backAddWindowSize As Integer = 5, Optional lookaheadWindowSize As Integer = 5, Optional averagingWindowSize As Integer = 3, Optional judgementWindowSize As Integer = 21, Optional threshold As Double = 0.3) As SrCnnAnomalyEstimator
<Extension()>
Public Function DetectAnomalyBySrCnn (catalog As TransformsCatalog, outputColumnName As String, inputColumnName As String, Optional windowSize As Integer = 64, Optional backAddWindowSize As Integer = 5, Optional lookaheadWindowSize As Integer = 5, Optional averageingWindowSize As Integer = 3, Optional judgementWindowSize As Integer = 21, Optional threshold As Double = 0.3) As SrCnnAnomalyEstimator
매개 변수
- catalog
- TransformsCatalog
변환의 카탈로그입니다.
- outputColumnName
- String
의 변환에서 생성된 열의 inputColumnName
이름입니다.
열 데이터는 벡터입니다 Double. 벡터에는 경고(1은 변칙을 의미하고 0은 정상을 의미함), 원시 점수 및 분광 잔류의 크기라는 세 가지 요소가 포함됩니다.
- windowSize
- Int32
스펙트럼 잔류를 계산하기 위한 슬라이딩 윈도우의 크기입니다.
- backAddWindowSize
- Int32
학습 창을 다시 추가할 지점 수입니다.
windowSize
일반적으로 기본값을 유지합니다.
- lookaheadWindowSize
- Int32
예측에 사용되는 다양한 포인트의 수입니다.
windowSize
일반적으로 기본값을 유지합니다.
- averagingWindowSizeaverageingWindowSize
- Int32
계열에 대한 살리엔시 맵을 생성할 슬라이딩 윈도우의 크기입니다.
windowSize
일반적으로 기본값을 유지합니다.
- judgementWindowSize
- Int32
각 데이터 요소에 대한 변칙 점수를 계산할 슬라이딩 윈도우의 크기입니다. 보다 windowSize
더 이상 없습니다.
- threshold
- Double
임계값보다 큰 비정상 점수를 결정하는 임계값은 변칙으로 간주됩니다. 에 있어야 합니다(0,1)
반환
예제
using System;
using System.Collections.Generic;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms.TimeSeries;
namespace Samples.Dynamic
{
public static class DetectAnomalyBySrCnn
{
// This example creates a time series (list of Data with the i-th element
// corresponding to the i-th time slot). The estimator is applied then to
// identify spiking points in the series.
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var ml = new MLContext();
// Generate sample series data with an anomaly
var data = new List<TimeSeriesData>();
for (int index = 0; index < 20; index++)
{
data.Add(new TimeSeriesData(5));
}
data.Add(new TimeSeriesData(10));
for (int index = 0; index < 5; index++)
{
data.Add(new TimeSeriesData(5));
}
// Convert data to IDataView.
var dataView = ml.Data.LoadFromEnumerable(data);
// Setup the estimator arguments
string outputColumnName = nameof(SrCnnAnomalyDetection.Prediction);
string inputColumnName = nameof(TimeSeriesData.Value);
// The transformed model.
ITransformer model = ml.Transforms.DetectAnomalyBySrCnn(
outputColumnName, inputColumnName, 16, 5, 5, 3, 8, 0.35).Fit(
dataView);
// Create a time series prediction engine from the model.
var engine = model.CreateTimeSeriesEngine<TimeSeriesData,
SrCnnAnomalyDetection>(ml);
Console.WriteLine($"{outputColumnName} column obtained post-" +
$"transformation.");
Console.WriteLine("Data\tAlert\tScore\tMag");
// Prediction column obtained post-transformation.
// Data Alert Score Mag
// Create non-anomalous data and check for anomaly.
for (int index = 0; index < 20; index++)
{
// Anomaly detection.
PrintPrediction(5, engine.Predict(new TimeSeriesData(5)));
}
//5 0 0.00 0.00
//5 0 0.00 0.00
//5 0 0.00 0.00
//5 0 0.00 0.00
//5 0 0.00 0.00
//5 0 0.00 0.00
//5 0 0.00 0.00
//5 0 0.00 0.00
//5 0 0.00 0.00
//5 0 0.00 0.00
//5 0 0.00 0.00
//5 0 0.00 0.00
//5 0 0.00 0.00
//5 0 0.00 0.00
//5 0 0.00 0.00
//5 0 0.03 0.18
//5 0 0.03 0.18
//5 0 0.03 0.18
//5 0 0.03 0.18
//5 0 0.03 0.18
// Anomaly.
PrintPrediction(10, engine.Predict(new TimeSeriesData(10)));
//10 1 0.47 0.93 <-- alert is on, predicted anomaly
// Checkpoint the model.
var modelPath = "temp.zip";
engine.CheckPoint(ml, modelPath);
// Load the model.
using (var file = File.OpenRead(modelPath))
model = ml.Model.Load(file, out DataViewSchema schema);
for (int index = 0; index < 5; index++)
{
// Anomaly detection.
PrintPrediction(5, engine.Predict(new TimeSeriesData(5)));
}
//5 0 0.31 0.50
//5 0 0.05 0.30
//5 0 0.01 0.23
//5 0 0.00 0.21
//5 0 0.01 0.25
}
private static void PrintPrediction(float value, SrCnnAnomalyDetection
prediction) =>
Console.WriteLine("{0}\t{1}\t{2:0.00}\t{3:0.00}", value, prediction
.Prediction[0], prediction.Prediction[1], prediction.Prediction[2]);
private class TimeSeriesData
{
public float Value;
public TimeSeriesData(float value)
{
Value = value;
}
}
private class SrCnnAnomalyDetection
{
[VectorType(3)]
public double[] Prediction { get; set; }
}
}
}